Intel® Converged Security Engine
Firmware Integrated Clock
Controller (ICC) Tool

Tools User Guide

July 2019
Revision 1.0

Intel Confidential

You may not use or facilitate the use of this document in connection with any infringement or other legal analysis concerning
Intel products described herein. You agree to grant Intel a non-exclusive, royalty-free license to any patent claim thereafter
drafted which includes subject matter disclosed herein.

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document.

Intel technologies’ features and benefits depend on system configuration and may require enabled hardware, software or service
activation. Learn more at Intel.com, or from the OEM or retailer.

No computer system can be absolutely secure. Intel does not assume any liability for lost or stolen data or systems or any
damages resulting from such losses.

The products described may contain design defects or errors known as errata which may cause the product to deviate from
published specifications. Current characterized errata are available on request.

Intel disclaims all express and implied warranties, including without limitation, the implied warranties of merchantability, fitness
for a particular purpose, and non-infringement, as well as any warranty arising from course of performance, course of dealing, or
usage in trade.

Intel technologies’ features and benefits depend on system configuration and may require enabled hardware, software or service
activation. Learn more at intel.com, or from the OEM or retailer.

All information provided here is subject to change without notice. Contact your Intel representative to obtain the latest Intel
product specifications and roadmaps.

Copies of documents which have an order number and are referenced in this document may be obtained by calling 1-800-548-
4725 or visit www.intel.com/design/literature.htm.

By using this document, in addition to any agreements you have with Intel, you accept the terms set forth below.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.
Intel and the Intel logo are trademarks of Intel Corporation in the U.S. and other countries.

*QOther names and brands may be claimed as the property of others.

Copyright © 2019, Intel Corporation. All rights reserved.

http://www.intel.com/design/literature.htm

Contents

1 | g oY 18 Tl o 1S PP 5
1.1 BLIC=10 2 11 0101 Lo Yo A PP 5

1.2 ReferenCe DOCUMENTS «..viiitiii it s sa e aaneanneanneans 5

2 N =] K ST 7
2.1 INEEIR ICCS SDK .ttt ittt et et e e et e e e ane e ateareaneanes 7

2.2 Intel® ICCS Control Library SDK FEAtUIES ...iuviviriieiriiiiriiireieieeeneeneneraenenens 7

2.3 Intel® Integrated Clock Controller Service Data Structuresc.ovvvuvnvnenen. 7

2.3.1 ICC_HECI_CLOCK_ID TYPE tiutiutinerniinirnernenneanssnernesnsanssneseansanssns 8

2.3.2] o o @eTa 1= NV o T 8

2.3.3 ICC_GET_CLOCK_SETTINGSEX TYPE tuttvtiriiriiniineiieniiniineinennennennns 8

2.3.4 ICC_SET_CLOCK_SETTINGSEX TYPE ttiiviiriitiiiiiieiinieiienennennenans 9

2.4 Intel® Integrated Clock Controller Service API - Clock Manipulation Interface10

2.4.1 Get Current Clock Settings Wrapper....c.covviiiiiiiiiiiiiiieeieeaeen 11

2.4.2 Set Current Clock Settings Wrapperccooviiiiiiiiiiiiiiieeeae 11

3 Intel® Watchdog Timer Driver (INtel® WDT DFiVEI)..uoiiuiiriiiiiieniieeineeeeeneeae e 12
3.1 Communication with the Drivercoiiiii e 12

3.2 Device FUNCEIONAIlY = TOCT LS ..ttt it e e e e a e aees 12

3.2.1 Acquire Intel® Watchdog Timer Driver Controlccovvvvivnieninenes 13

3.2.2 Intel® Watchdog Timer Driver CONtrolccvvvveiiiiiiniiiiienenannns 13

3.2.3 Reload and Start Intel® Watchdog Timer Drivercccovvvininnnn. 14

3.2.4 Stop Intel Watchdog Timer Driver......ccvviiiiiiiiiiiv e 15

3.2.5 Get Supported Countdown Dataccvvieviiiiiiii i rens 15

3.2.6 Get Intel® Watchdog Timer Driver Status......coovvvvvvivieiniieinnnennnnns 16

3.2.7 Start Intel® Watchdog Timer Driver on Next OS Load 18

3.3 [g V=T ol Yo ol <=3 18

3.4 Usage FIOWS EXample. . ..o 19

3.4.1 [N\ o] g n aT=1 I 1 (o 1 A PP 19

3.4.2 Start on Next Boot FIOW ...oiiiiiiiiiii i e ciae e 20

intel.

Revision History

Revision Number

Description

Revision Date

0.5 e Initial release. January 2018
e Added Set/Get Register commands
e Added Set/Get mPHY commands
0.6 e Removed Set/Get Record Commands February 2018
e Removed Set/Get chipset Init commands
o Listed examples for newly added commands
0.7 ¢ Align revision number April 2018
0.8 ¢ Align revision number September 2018
0.85 e Reformatted all tools. March 2019
1.0 e Removed Intel® CCT tool July 2019

88

Introduction i n te l Q:

1 Introduction

The purpose of the document is to provide guidance on the usage of the tools
provided for Intel® Converged Security Engine (Intel® CSE) Firmware Integrated
Clock Controller (ICC) included within the Intel firmware kit.

This document covers the usage of the ICC SDK available in the
Tools\System_Tools\ICC Tools\ICC SDK directory within the Intel® CSE FW Kkit.

1.1 Terminology
Acronym or Definition
Term

API Application Programming Interface

BIOS Basic Input Output System

CPU Central Processing Unit

DLL Dynamic Link Library

Intel® FIT Intel® Flash Image Tool

FW Firmware

Intel® ICCS Intel® Integrated Clock Controller Services

Intel® CSE Intel® Converged Security
Engine

Intel® MEI Intel® Management Engine Interface (formerly HECI)

PCH Platform Controller Hub

Permanent UOB UOB that is applied on every boot.

uoB Update on Boot. A record of ICC registers setting that is applied on the
next platform boot.

1.2 Reference Documents

Document Document No./Location

Lake Field Platform Controller Hub (LKF PCH) SPI Programming | FW release kit
Guide

Introduction

Document

Document No./Location

Lake Field Platform Controller Hub (LKF PCH) Intel®
Management Engine Firmware Bring Up Guide

FW release kit

Lake Field Platform Controller Hub (LKF PCH) External Design
Specification (EDS) Vol 1 & Vol 2

CDI#:
Vol 1 > 574211
Vol 2 - 575200

Intel® ICCS SDK l n te l u

2

Intel® ICCS SDK

2.1

2.2

2.3

Intel® ICCS SDK

Intel® Integrated Clock Controller Services (Intel® ICCS) provides a lot of flexibility for
OS applications. To ease OS application development and to avoid erratic
programming of ICC, Intel provides an ICC Control Library and abstracts ICC
hardware from clock tuning applications such as BIOS.

Intel® ICCS Control Library SDK Features

ICC HW is only accessible to Intel® Management Engine (Intel® ME) and is accessible
indirectly to the host software through a set of Intel® Management Engine Interface
(Intel® MEI) APIs that is known to the Intel® Integrated Clock Controller Service. Intel
does not expose this Intel MEI APIs and does not recommend OS applications to use
them to keep platform stability.

Example of application that may call Intel® Integrated Clock Controller Service:

¢ Intel® Extreme Tuning Utility (Intel® XTU). This application can overclock or
underclock platform BCLK (Processor clock).

Intel® Integrated Clock Controller Service Data
Structures

Intel® Integrated Clock Controller Service provides a simplified ICC data structures
and APIs for clock manipulation. The new data structure has significantly been

reduced and simplified compared to previous generation of ICC control library. The
ICC data structure is described in this section.

Table 2. Intel® Integrated Clock Controller Service API Data Structures

Name Type Description
ICC_HECI_CLOCK_ID Enum Defines the clock id for applicable clocks
ErrorCodes UINT32 Returns error codes from Intel® Integrated Clock

Controller Service API calls

ICC_GET_CLOCK_SETTI Struct Contains the current clock setting
NGSEXx
ICC_SET_CLOCK_SETTI Struct Contains updatable clock setting

NGSEx

i n tel ’) Intel® ICCS SDK

2.3.2

2.3.3

ICC_HECI_CLOCK_ID Type

The ICC_HECI_CLOCK_ID data structure provides the applicable clock to be selected
with the following structure.

typedef enum
{

ICC_HECI_PCIE_CLOCK_ID = @,

ICC_HECI_BCLK_CLOCK_ID = 1,

ICC_HECI_WMPHY_CLOCK_ID = 2
}ICC_HECI_CLOCK_ID;

Table 3. Intel ICC_HECI_CLOCK_ID type

Name Description
ICC_HECI_PCIE_CLOCK_ID PClIe Clock (CPUBCLK Signal to CPU)
ICC_HECI_BCLK_CLOCK_ID BCLK Clock (CPUBCLK Signal to CPU)
ICC_HECI_WMPHY_CLOCK_ID White Mountain PLL

ErrorCodes Type

The ErrorCodes data structure provides description of the return error code from the
Intel® Integrated Clock Controller Service.

The returned values are represented in UINT32 the following function is required to
parse the values into char type:

const char* GetErrorStringByCode(const UINT32 errorCode);

ICC_GET_CLOCK_SETTINGSEx Type

The ICC_GET_CLOCK_SETTINGSEX structure provides all the clock settings details as
the following:
typedef struct _ICC_GET_CLOCK_SETTINGSEX
{

UINT32 Frequency;

UINT32 UserFrequency;

UINT32 MaxFrequency;

UINT32 MinFrequency;

UINT8 SscMode;

UINT8 SscPercent;

UINT8 MaxSscPercent;

UINT16 CurrentFlags;

UINT16 SupportFlags;
} ICC_GET_CLOCK_SETTINGSEX;

Intel® ICCS SDK ‘ i n t9|o}

2.3.4 ICC_SET_CLOCK_SETTINGSEXx Type

The ICC_SET_CLOCK_SETTINGSEX structure provides all the updatable clock settings
as the following:

typedef struct _ICC_SET _CLOCK_SETTINGSEx
{
UINT32 UserFrequency;

UINT8 SscPercent; // encoding example: 1.28% -> SSC_SPREAD value 1is
128

BOOL SetToDefault;
BOOL ForcePowerFlow;
} ICC_SET_CLOCK_SETTINGSEX;

2.4

l n te l O Intel® ICCS SDK

Intel® Integrated Clock Controller Service API -
Clock Manipulation Interface

The Intel® Integrated Clock Controller Service provides a new set of simplified APIs in
form of COM. The API exposed by the Intel® Integrated Clock Controller Service is
used for communication between Intel® Integrated Clock Controller Service and client

applications.

It is assumed that an application would only configure ICC clocks that “belong” to it.
There is no provision in the library to lock a specific clock from a specific application.

Each API in the following section provides detail about Input and Output parameters
for each API, as well as function prototype. For this guide, example in the following
programming language will be provided: IDL and C++. Other programming languages
are supported by the API, but an example will not be provided by this SDK user guide.

Note: Please note that Intel MEI Driver installation is required.Figure 1. Intel®
Integrated Clock Controller Service Architecture

XTU
Admin Level App

i -
§ Adaptive Clocking
§ Admin Level Application PNM
- PassThrough Frequency
£ Ner Gk Consolidation
§ - : Helper Plugin

F ‘ Censolidation Helper (Admln' Level
g Int':?f‘elfentfze 2. Are requested Service)

frequencies ckay?

§ theckss Eypass 3. OK or Not OK

{Suggest blackout list
per clock)

ME HECI Driver
{Kernel Mode Driver)

Intel® ICCS SDK

2.4.1

2.4.2

User Guide

Get Current Clock Settings Wrapper

Through this function, the host application can get the runtime settings of the ICC
clock identified by ICC_HECI_PCIE_CLOCK_ID parameter. The request returns the
runtime settings of the clock.

Definition:

UINT32 IccLibGetCurrentClockSettingsWrapper(const ICC_HECI_CLOCK_ID

clockId, ICC_GET_CLOCK_SETTINGSEx * const clockSettings);

Table 4. Get Clock Runtime Settings Parameters

Type Field Description
Input clockld Clock identifier
Output clockSettings Runtime settings of the clock.
Meaningful only if successful status is received.

Set Current Clock Settings Wrapper

Host application calls this function to change the settings of one of the ICC clocks.

For host application (with Admin level) call, the request will be verified against the ICC
Clock Range Definition Record.

For host application (with user level) call, the request will be verified against the ICC
enhanced SKU Clock Range definition.

Note: If the requested frequency is not supported by the HW, it will be automatically
rounded by Intel® Integrated Clock Controller Service to the nearest valid frequency.
If there are two nearest valid frequencies (up and down), the lower value will be

chosen.

Definition:

UINT32 IccLibSetCurrentClockSettingsWrapper(const ICC_HECI_CLOCK_ID
clockId, ICC_SET_CLOCK_SETTINGSEx * clockSettings);

Table 5. Set Clock Runtime Settings Parameters

Type Field Description
Input clockld Clock identifier
Input clockSettings Runtime configuration for the clock.

Intel Confidential

11

intel)

Intel® Watchdog Timer Driver (Intel® WDT Driver)

Intel® Watchdog Timer Driver
(Intel® WDT Driver)

3.1

3.2

Intel® Watchdog Timer Driver is a kernel driver (KMDF) that responsible for claiming
the ACPI Intel WDT Device which is created by the BIOS and attaching to it. Itis
responsible for directly communicating with the hardware via I/0 and should be aware
of the hardware interface details necessary to communicate with the PCH. The Driver
supports the following OS:

Windows* 7 (32-bit and 64-bit Editions)
Windows* 8 (32-bit and 64-bit Editions)
Windows* 8.1 (32-bit and 64-bit Editions)
Windows* Threshold (32-bit and 64-bit Editions)
Windows* Threshold2 (32-bit and 64-bit Editions)
Windows* 10 RS1(32-bit and 64-bit Editions)

Communication with the Driver

Communication with the Intel WDT driver is like any other kernel driver: When it’s
needed - use the standard Device/Files API (CreateFile, ReadFile, WriteFile,
DeviceloControl).

The device is identified by the following GUID (that is defined in ICCWDT_Interface.h):

// {C2E625A9-8693-4dea-BAC4-B15CA98F9EE9}

DEFINE_GUID(GUID_DEVINTERFACE_ICCWDT,

0Oxc2e625a9, 0x8693, 0x4dea, Oxba, Oxc4, Oxb1l, Ox5c, 0xa9, 0x8f, 0x9¢e, 0xe9),;

Connection example code can be found in Microsoft* Windows* Driver Kit
http://www.microsoft.com/whdc/devtools/wdk/default.mspx.

Device Functionally - IOCTLs

The following list describes the device IOCTLs:

Table 6. Device Functionality - IOCTLs

IOCTL

Description

ICCWDT_AQUIRE_WDT

Acquire Intel Watchdog Timer Driver
Control

ICCWDT_RELEASE_WDT

Release Intel Watchdog Timer Driver
Control

http://www.microsoft.com/whdc/devtools/wdk/default.mspx

m ®
Intel® Watchdog Timer Driver (Intel® WDT Driver) I n tel)

IOCTL Description

ICCWDT_RELOADANDSTART_WDT Reload and Start Intel Watchdog Timer
Driver

ICCWDT_STOP_WDT Stop Intel Watchdog Timer Driver

ICCWDT_GET_SUPPORTED_CD_DATA Get Supported Countdown Data

ICCWDT_GET_WDT_STATUS Get Intel Watchdog Timer Driver Status

ICCWDT_START_WDT_ON_NEXT_OSBOOT Start Intel Watchdog Timer Driver on Next
OS Load

3.2.1 Acquire Intel® Watchdog Timer Driver Control

The Acquire Intel Watchdog Timer Driver (Intel® WDT Driver) Control method allows a
single application to be able to gain control of the Intel WDT Driver. Due to the timing
sensitive nature of the Intel WDT Driver, associated timeouts and reloads, only a
single application can be allowed to control the hardware at a time.

Table 7. Acquire Intel® Watchdog Timer Driver Control

IOCTL Name ICCWDT_AQUIRE_WDT

IOCTL Definition CTL_CODE(FILE_DEVICE_ACPI, 0x800, METHOD_BUFFERED,
FILE_READ_ACCESS| FILE_WRITE_ACCESS)

Input None
Output ULONG Key - Watchdog Acquiring key
Error Code SUCCESS - No Error - Successful

ACCESS_DENIED_ERROR - Intel Watchdog Timer Driver already
been acquired

HARDWARE_LOCKED_ERROR - Intel Watchdog Timer Driver
hardware registers are lock, can’t be modified.

FATAL_ERROR - Unexpected error - Fatal Error.

3.2.2 Intel® Watchdog Timer Driver Control

The Release Intel Watchdog Timer Driver Control IOCTL is used to release control of
the Intel WDT Driver from the application that currently controls it. This
communicates to the driver that the current application is done with its needs for the
Intel WDT Driver and that it can be allocated to another application if necessary.

User Guide Intel Confidential 13

http://www.osronline.com/DDKx/kmarch/irps_1l0n.htm

u ®
l n tel Intel® Watchdog Timer Driver (Intel® WDT Driver)

Table 8. Release Intel® Watchdog Timer Driver Control

IOCTL Name ICCWDT_RELEASE_WDT

IOCTL Definition CTL_CODE(FILE_DEVICE_ACPI, 0x802, METHOD_BUFFERED,
FILE_READ_ACCESS| FILE_WRITE_ACCESS)

Input ULONG Key - Intel Watchdog Timer Driver Acquiring key, retrieved
from ICCWDT_AQUIRE_WDT
Output None
Error Code SUCCESS - No Error - Successful

ACCESS_DENIED_ERROR - Intel Watchdog Timer Driver already
been released

FATAL_ERROR - Unexpected error — Fatal Error.

3.2.3 Reload and Start Intel® Watchdog Timer Driver

The Reload and Start Intel Watchdog Timer Driver IOCTL is responsible for loading the
appropriate countdown timer into the Intel WDT Driver, reloading the countdown
timer, and enabling the Intel WDT Driver countdown. When the Intel WDT Driver
counter reaches 0 then the Intel WDT Driver will signal a Global Reset. If this
happens it is assumed that the platform is no longer responsive, and the reset action
is required to return the platform to a usable state. The countdown value can vary
between 1 sec and 1024 sec (~17Min).

Table 9. Reload and Start Intel® Watchdog Timer Driver

IOCTL Name ICCWDT_RELOADANDSTART_WDT

IOCTL Definition | CTL_CODE(FILE_DEVICE_ACPI, 0x803, METHOD_BUFFERED,
FILE_READ_ACCESS| FILE_WRITE_ACCESS)

Input typedef struct _ICCWDT_RELOADANDSTART_DATA{
ULONG Key;
UINT16 CountdownVal;

}ICCWDT_RELOADANDSTART_DATA,
*PICCWDT_RELOADANDSTART_DATA;

ULONG Key - Intel Watchdog Timer Driver Acquiring key, retrieved
from ICCWDT_AQUIRE_WDT

UINT16 CountdownVal - Intel Watchdog Timer Driver Countdown
Value. Can be set between 1d and 1024d

Output None

Error Code SUCCESS - No Error - Successful

ACCESS_DENIED_ERROR - Intel Watchdog Timer Driver was not
been acquired or wrong acquiring key.

INVALID_PARAMETER_ERROR - Bad Countdown value.

FATAL_ERROR - Unexpected error - Fatal Error.

http://www.osronline.com/DDKx/kmarch/irps_1l0n.htm
http://www.osronline.com/DDKx/kmarch/irps_1l0n.htm

m ®
Intel® Watchdog Timer Driver (Intel® WDT Driver) I n tel)

3.2.4

3.2.5

User Guide

Stop Intel Watchdog Timer Driver

The Stop Intel® Watchdog Timer Driver IOCTL is responsible for stopping the Intel
WDT Driver countdown. When the Intel WDT Driver counter has been stopped it will
never signal a Global Reset. This method does not infer that a reload of the
countdown timer has occurred. It merely disabled the Global Reset output. To restart
the Intel WDT Driver, the user can just call the Reload and Start Intel Watchdog Timer
Driver IOCTL.

Table 10. Stop Intel® Watchdog Timer Driver

IOCTL Name ICCWDT_STOP_WDT

IOCTL Definition CTL_CODE(FILE_DEVICE_ACPI, 0x804, METHOD_BUFFERED,
FILE_READ_ACCESS| FILE_WRITE_ACCESS)

Input ULONG Key - Intel Watchdog Timer Driver Acquiring key, retrieved
from ICCWDT_AQUIRE_WDT
Output None
Error Code SUCCESS - No Error - Successful

ACCESS_DENIED_ERROR - Intel Watchdog Timer Driver was not
being acquired or wrong acquiring key.

FATAL_ERROR - Unexpected error - Fatal Error.

Get Supported Countdown Data

The Get Supported Countdown Data IOCTL is responsible for providing the calling
application with the information necessary to understand what timeout settings are
available for the Intel WDT Driver. This IOCTL can be called at any point while the
caller has control over the Intel WDT Driver.

Intel Confidential 15

http://www.osronline.com/DDKx/kmarch/irps_1l0n.htm

u ®
l n tel Intel® Watchdog Timer Driver (Intel® WDT Driver)

3.2.6

Table 11. Get Supported Countdown Data

IOCTL Name ICCWDT_GET_SUPPORTED_CD_DATA

IOCTL Definition CTL_CODE(FILE_DEVICE_ACPI, 0x805, METHOD_BUFFERED,
FILE_READ_ACCESS| FILE_WRITE_ACCESS)

Input ULONG Key - Intel Watchdog Timer Driver Acquiring key, retrieved
from ICCWDT_AQUIRE_WDT

Output typedef struct _ICCWDT_SUPPORTED_CD_DATA{
UINT16 MinimumTimeoutPeriod;

UINT16 MaximumTimeoutPeriod;

UINT16 TimeoutResolution;

}ICCWDT_SUPPORTED_CD_DATA,
*PICCWDT_SUPPORTED_CD_DATA;

UINT16 MinimumTimeoutPeriod - Minimum Intel Watchdog Timer
Driver Timeout Period

UINT16 MaximumTimeoutPeriod - Maximum Intel Watchdog Timer
Driver Timeout Period

UINT16 TimeoutResolution - Intel Watchdog Timer Driver Timeout
Resolution

Note: all values are in seconds.

Error Code SUCCESS - No Error - Successful

ACCESS_DENIED_ERROR - Intel Watchdog Timer Driver was not
acquired or wrong acquiring key.

FATAL_ERROR - Unexpected error — Fatal Error.

Get Intel® Watchdog Timer Driver Status

This IOCTL is used to report the status of the previous boot to the application calling
the Intel WDT Driver. The intent is to let the controlling application know whether the
previous boot had resulted in a failed POST. This includes either an Intel WDT Driver
Timeout or an unexpected reboot while the Intel WDT Driver was running. Either
situation will result in a timeout and communication of that failure through this
method.

Table 12. Get Intel® Watchdog Timer Driver Status

IOCTL Name ICCWDT_GET_WDT_STATUS

http://www.osronline.com/DDKx/kmarch/irps_1l0n.htm

®
Intel® Watchdog Timer Driver (Intel® WDT Driver) I n tel

User Guide

IOCTL
Definition

CTL_CODE(FILE_DEVICE_ACPI, 0x806, METHOD_BUFFERED,
FILE_READ_ACCESS| FILE_WRITE_ACCESS)

Input

ULONG Key - Watchdog Acquiring key, retrieved from
ICCWDT_AQUIRE_WDT

Output

typedef enum _ICCWDT_TIMER_STATUS_TYPE
{

FAIL,

PASS
YICCWDT_TIMER_STATUS_TYPE;

typedef enum _ICCWDT_TIMER_STATE_TYPE
{

RUNNING,

STOPPED
}ICCWDT_TIMER_STATE_TYPE;

typedef struct _ICCWDT_GET_WDT_STATUS_DATA{
ICCWDT_TIMER_STATUS_ENUM WDTTimerStatus;
ICCWDT_TIMER_STATE_TYPE WDTTimerState;
UINT16 WDTCountdownPeriod;

}ICCWDT_GET_WDT_STATUS_DATA,
*PICCWDT_GET_WDT_STATUS_DATA,;

ICCWDT_TIMER_STATUS_TYPE WDTTimerStatus - Watchdog Timer Status
ICCWDT_TIMER_STATE_TYPE WDTTimerState - Watchdog Timer State
UINT16 WDTCountdownPeriod - Watchdog Timer Countdown Period

ICC WDT STATUS Description

Fail e Previous boot occurred during Intel WDT
Driver was running

e Intel WDT Driver expired

Pass e Previous boot occurred when Intel WDT
Driver was stopped

ICC WDT STATE Description

Running e Intel WDT Driver is running

Stopped e Intel WDT Driver is stopped

Error Code

SUCCESS - No Error - Successful

ACCESS_DENIED_ERROR - Watchdog Timer was not acquired or wrong
acquiring key.

FATAL_ERROR - Unexpected error - Fatal Error.

Intel Confidential

17

http://www.osronline.com/DDKx/kmarch/irps_1l0n.htm

u ®
l n tel) Intel® Watchdog Timer Driver (Intel® WDT Driver)

3.2.7

3.3

Start Intel® Watchdog Timer Driver on Next OS Load

This IOCTL is used to communicate to the BIOS that on the next boot attempt, the
Intel WDT Driver should be turned on after the POST process has been completed.
This allows for instability coverage after POST has completed, yet before drivers can
be loaded by the OS. It is a mechanism that allows for automatically recovering from
system instability issues while applying a setting that requires a reboot. The given
value is between 0 and 1008. 0 is for disabling Starting Intel Watchdog Timer Driver
on Next OS Load. The values will be rounded to 16sec intervals (e.g. 1-16 will be set
to 16 secs; 17-32 will be set to 32sec etc....)

It is required that any application which requests the Intel WDT Driver be started

during the next OS load must automatically load during the next OS boot and call the
Check Intel Watchdog Timer Driver Status IOCTL and handle the result appropriately.

Table 13. Start Intel® Watchdog Timer Driver on Next OS Load

IOCTL Name ICCWDT_START_WDT_ON_NEXT_OSBOOT

IOCTL Definition | CTL CODE(FILE_DEVICE_ACPI, 0x807, METHOD_BUFFERED,
FILE_READ_ACCESS| FILE_WRITE_ACCESS)

Input typedef struct _ICCWDT_START_WDT_ON_NEXT_OSBOOT_DATA{
ULONG Key;
UINT16 TimeoutValue;

Y ICCWDT_START_WDT_ON_NEXT_OSBOOT_DATA,PICCWD
T_START_WDT_ON_NEXT_OSBOOT_DATA;

ULONG Key - Watchdog Acquiring key, retrieved from
ICCWDT_AQUIRE_WDT

UINT16 TimeoutValue - Watchdog Timer Timeout Value

Output None

Error Code SUCCESS - No Error - Successful

ACCESS_DENIED_ERROR - Watchdog Timer was not acquired or wrong
acquiring key.

INVALID_PARAMETER_ERROR - Invalid Countdown Value.

COUNTDOWN_ERROR - Enable to Start Intel WDT Driver ON Next Load.

FATAL_ERROR - Unexpected error - Fatal Error.

Driver Access

By default, the access to the driver is limited for “Local System” accounts; this means
that only Services will be able to access the driver. For development purposes there is
a version of the driver called "Debug/Development Mode” this driver has all user
access to the driver after installation.

http://www.osronline.com/DDKx/kmarch/irps_1l0n.htm

Intel® Watchdog Timer Driver (Intel® WDT Driver)

3.4

3.4.1

User Guide

intel,

Note: Intel Watchdog Timer Driver Debug Driver will reload and start the timer every

0.5 seconds after the first ReloadAndStart command from the User.

Note: Development’ mode driver should only be used in development, and not in
production.

Usage Flows Example

Examples below use Pseudo Code.

Normal Flow

#include <windows.h>
#include "ICCWDT_Interface.h”

ULONG key = 0;
void MyIccWdtThread()
{
// Boilerplate code from MSFT to getting the Device Path from Device Interface.
string devicePath = GetDevicePath(GUID_DEVINTERFACE_ICCWDT);
HANDLE deviceHandle = CreateFile(devicePath, ...);
// Acquire Timer
DeviceControl(deviceHandle, ICCWDT_AQUIRE_WDT, NULL, key),;
while(!MyApp_Stop)
{
ICCWDT_RELOADANDSTART_DATA data;
data.key = key;
data.CountdownVal = MY_WDT_VALUE;

// Start the Timer
DeviceControl(deviceHandle, ICCWDT_RELOADANDSTART_WDT, data, NULL);

// Sleep for Time < ICC WDT Timer Value (MY_WDT_VALUE)

Sleep(MY_WDT_SLEEP)
}

// Stop Timer
DeviceControl(deviceHandle, ICCWDT_STOP_WDT, key, NULL);

// Release Timer
DeviceControl(deviceHandle, ICCWDT_RELEASE WDT ,key, NULL);

CloseHandle(deviceHandle),;

Intel Confidential

19

®
l n tel Intel® Watchdog Timer Driver (Intel® WDT Driver)

3.4.2 Start on Next Boot Flow

#include <windows.h>
#include "ICCWDT_Interface.h”

ULONG key = 0;

void StartOnNextBoot()
{

// Boilerplate code from MSFT to getting the Device Path from Device Interface.
string devicePath = GetDevicePath(GUID_DEVINTERFACE_ICCWDT);

HANDLE deviceHandle = CreateFile(devicePath, ...);

ULONG key;

// Acquire Timer (if not already acquired)
DeviceControl(deviceHandle, ICCWDT_AQUIRE_WDT, NULL, key);

ICCWDT_START_WDT_ON_NEXT_OSBOOT_DATA data;
data.key = key;
data.TimeoutValue= MY_WDT_VALUE;

// Start the Timer
DeviceControl(deviceHandle, ICCWDT_START_WDT_ON_NEXT_OSBOOT, data, NULL),

// Release Timer (if not releasing in another place)
DeviceControl(deviceHandle, ICCWDT_RELEASE _WDT ,key, NULL);

CloseHandle(deviceHandle),;

// Reboot System or prompt the user to reboot.
RebootSystem();

