(intel.

Lakefield Signing and
Manifesting Guide

User Guide

Revision 1.0
July 2019

Intel Confidential

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO
LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL
PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS
AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY
WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO
SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO
FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY
PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

A "Mission Critical Application" is any application in which failure of the Intel Product could
result, directly or indirectly, in personal injury or death. SHOULD YOU PURCHASE OR USE
INTEL'S PRODUCTS FOR ANY SUCH MISSION CRITICAL APPLICATION, YOU SHALL INDEMNIFY
AND HOLD INTEL AND ITS SUBSIDIARIES, SUBCONTRACTORS AND AFFILIATES, AND THE
DIRECTORS, OFFICERS, AND EMPLOYEES OF EACH, HARMLESS AGAINST ALL CLAIMS COSTS,
DAMAGES, AND EXPENSES AND REASONABLE ATTORNEYS' FEES ARISING OUT OF, DIRECTLY
OR INDIRECTLY, ANY CLAIM OF PRODUCT LIABILITY, PERSONAL INJURY, OR DEATH ARISING
IN ANY WAY OUT OF SUCH MISSION CRITICAL APPLICATION, WHETHER OR NOT INTEL OR ITS
SUBCONTRACTOR WAS NEGLIGENT IN THE DESIGN, MANUFACTURE, OR WARNING OF THE
INTEL PRODUCT OR ANY OF ITS PARTS.

Intel may make changes to specifications and product descriptions at any time, without notice.
Designers must not rely on the absence or characteristics of any features or instructions
marked "reserved" or "undefined". Intel reserves these for future definition and shall have no
responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.
The information here is subject to change without notice. Do not finalize a design with this
information.

The products described in this document may contain design defects or errors known as errata
which may cause the product to deviate from published specifications. Current characterized
errata are available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and
before placing your product order.

Copies of documents which have an order number and are referenced in this document, or
other Intel literature, may be obtained by calling 1-800-548-4725, or go
to: http://www.intel.com/design/literature.htm

*QOther names and brands may be claimed as the property of others.
Copyright © 2019, Intel Corporation. All rights reserved.

2 Intel Confidential User Guide

http://www.intel.com/design/literature.htm

Contents

User Guide

L T Y= 5
1.1 Tools Used In This Documentcoooviviiiiiiiiiiiie e 5
1.2 BIC= 0.0 o] [T 1P 5
1.3 Pre-ReqUISItES....iiiviiii 7
9] e Yo [U T o o 8
2.1 Why is signing important? ... 8
2.2 Who performs the signing?ccooiiiiiiiiiiiiii e 8
2.3 When is signing performed?ccooiviiiiiiiiiii e 8
Theory Of SIgNiNG . .ce it aaneaanens 9
3.1 Cryptography BasiCSivviiiiiiiiiiiiiiini e 9
3.2 KBY SCUNEY 1ttt i e e 9
3.3 Signed Components and Their Structurecocvvvvvievinnnn. 10
3.4 OEM Key Manifest (OEM KM) ...ooviiiiiiiiiiiiii e 11
3.5 Opting out of the OEM KM......iiiiiiiiiiii e 12
3.6 Stitching a Flashable Imageccvviiiiiiiiii e 12
3.7 | o T Y [o Vo PN 13
3.7.1 Boot FIow Order.....ccoovviiiiiiiiii i 13
3.7.2 OEM KM Precedenceocvviviiiniiinenieiineninennnennnes 14
3.7.3 Signature Authentication during Boot 15
HOW £0 SigN coviiiiiiii i 17
4.1 High Level Signing of OEM Components........c.ccvvevievininnnnen. 17
4.2 Quick List of Signing Commandsccvviiieiiiieinieieeanenen 17
4.3 Extended Signing Commands, Detailed Instructions and MEU
A S . ettt 19
4.3.1 Additional ways to generate public key hash.......... 19
4.3.2 Versioning of Signed Components..........covvvvieinnnns 20
4.4 Intel® Manifest Extension Utility (Intel® MEU)covvvvvnene. 22
4.4.1 LS 22
4.4.2 EXamMPIES c v 23
Add Components to INtEI® FIT ...civiiiiiiiiiiiii i eiene e neeaenens 36
5.1 Signing components added to FITccoviiiiiiiiiiiiiiiieeeens 36
5.2 FIT Manifest Version Validation.........cc.covviiiiiiiiiiiciie e 37
8 37
Production Signing ..cooeiieiiii e 38
6.1 Production Signing High-Level ..., 38
6.2 EXport Manifestscviiiiiiiiii e 38
6.3 Manifest STrUCTUIESvviieii i i ee e 39
6.3.1 Manifest Header......cooovviiiiiiii e 39
6.3.2 Signed Package Info Extension............ccoevevieinnnens 41
6.3.3 Metadata extensionS....ccovvvv v i 42
6.3.4 OEM Key ManifesSt.......oieiuiieieiiiie e 42
6.4 IMport Manifest ..o 43
Common Bring Up Issues and Troubleshooting Table...................... 45
7.1 Common Bring Up Issues and Troubleshooting Table............ 45

Intel Confidential 3

intel)

Revision History

Revision Description Revision
Number Date
1.0 Copy from TGL and change name. July *19

Corrected RSA and SHA values (not same as TGL)
Added description for use of PFT for Token signing

Intel Confidential User Guide

Overview

1 Overview

This document describes the manifesting and signing of OEM
components, enabling them to be included in the IFWI image for
Lakefield platforms using ME13 FW.

The goal of this guide is to train the user to:

1. Manifest and sign OEM components

2. Include data on all signatures in the IFWI image

3. Build the final flashable production IFWI image

4. Configurations and options available in the signing process

This guide also offers theory and background for signing and IP loading
flow.

1.1 Tools Used In This Document

The following tools are referenced this document:

Intel® Flash Image Tool (Intel® FIT): in Intel® ME FW Kit

Intel® Manifest Extension Utility (Intel® MEU): in Intel® ME FW Kit
Intel® Platform Flash Tool (Intel® PFT)

OpenSSL: Open Source

1.2 Terminology
Term Description

TGL Lakefield

Intel® FIT Intel® Flash Image Tool

Intel® MEU Intel® Manifest Extension Utility

Intel® PFT Intel® Platform Flash Tool

IFWI Integrated Firmware Image (System FW Image on SPI)

OEM KM OEM Key Manifest (containing OEM public key hashes to
authenticate OEM signed FW components).

ROT KM Root of Trust Key Manifest (containing Intel public key
hashes to authenticate Intel signed FW components)

ISH Integrated Sensor Hub

EOM End of Manufacturing

FW Firmware

User Guide Intel Confidential 5

Overview

Term Description

IUP Independently Updatable Partition
Intel Confidential User Guide

Overview

1.3

User Guide

Pre-Requisites

The user should download and install the Latest Intel® ME FW kit from
the following location: https://platformsw.intel.com/

The following guides, found in the ME FW kit, can offer background for
processes and tools discussed in this document:

e LKF Firmware Bring-Up Guide: Describes the overall platform bring-
up procedure.

o LKF System Tools User Guide: Offers further detail regarding usage
of all FW manufacturing tools.

Intel Confidential

https://platformsw.intel.com/

intel.

Introduction

2 Introduction

2.1 Why is signing important?

When a platform boots, it is critical to ensure the FW is loaded from a
trusted source.

Signing of FW components ensures that the owner of the component
(OEM/Intel) authorizes the loading and running of their component on
the platform. This is done by establishing a chain of trust from the
hardware of the platform itself, where hardware authenticates a key
manifest, and the key manifest is used to then authenticate the FW
components.

Platform Chain of trust extended from HW to OEM components

OEM Public
L&y ke a f\)/IEal\:i:fe?t, Comoil\r:lents Load
P Component

HW FPF

2.2 Who performs the sighing?

Intel signs all FW components to be loaded by CSME. OEMs may add
or replace capabilities for several components, such as ISH, Audio and
iUnit. In order to load the OEM components and use their capabilities,
signing of the component and an OEM KM is required.

If the OEM wishes to only use the Intel provided components, the OEM
is not required to sign anything, and OEM KM is not created.

2.3 When is sighing performed?

Signing of components and creation and signing of OEM KM, is a step
performed in the R&D facilities pre-manufacturing. At the time of
manufacturing, the ready signed OEM components and OEM KM are
entered into the image creation tool (FIT) and the key used to
authenticate the OEM KM will be burned to the fuses. This will be
discussed in greater detail below.

8 Intel Confidential User Guide

Theory of Signing

Theory of Signing

3.1

3.2

User Guide

This chapter discusses the theory of signed structures, signing
components and how authentication is performed during boot flow.
For technical instructions on how to use the tools to sign your
components, please refer to chapter 4.

Cryptography Basics

Signing flow, and establishing a chain of trust, is based on the
concepts of cryptography. Two cryptographic functions are used in the
process:

1. Hashing

A one directional mathematical operation which is simple to
calculate, yet computationally difficult to reverse. It will produce
completely different outputs even when input data is similar. For
TGL, the hashing function used is SHA-256, which is from the
SHA2 family of cryptographic functions.

2. Data Encryption using RSA Algorithm

Using a private and public key pair which are mathematically
linked, data can be encrypted and then decrypted (reverse
encryption). The private key is used to encrypt the data, and then
public key can be used to decrypt it back to the original source.

In the signing process of components, the data being encrypted is
the hash of the original binary component, and the public key is
used to decrypt it back to its original format during verification. It
is important for the private key to be stored securely, so that only
the original body can perform the encryption. Public key is
available to the public, since once it is used to decrypt the
signature, the output is compared with the binary hash present in
the component. They will only match if the public key
mathematically corresponds perfectly to the private key used
during encryption.

For TGL, the private key size is RSA-2048.

Key Security

Although the same key may be used for signing each entry in the OEM
Key Manifest and the key manifest itself, Intel recommends using
separate key pairs for signing each component. Using a single key for
signing multiple components poses a level of risk, since if the key is
compromised, the entire package is compromised.

Production private keys should always be stored securely and kept
secret to provide a robust secure boot flow and firmware load. If the
keys escape to 3" parties, they may be used to create and sign
unofficial versions of the binaries which can then be loaded onto the
platform.

Intel Confidential 9

3

-3

intel.

Theory of Signing

It is important to allowing restricted/audited access to the keys in
order to resign components and build updated images for the platform.

For example, MEU could be run on a secure server which houses the
keys or OEMs may use the MEU export function for production signing
if MEU does not run on the OEM'’s signing server (see production
signing chapter).

OEMs should manage separate sets of keys for development signing
and production signing of images. This will ensure that the OEM KM
and components run on production platforms is of production quality.

Signed Components and Their Structure

The OEM may create and sign ISH and iUnit to replace the capabilities
of the Intel ISH and iUnit, as well as create and sign an Audio
component to extend the Audio capability provided by Intel. Each one
of these is independent. In addition, there are OEM signed binaries
that use the signing chain of trust to enable capabilities such as debug
tokens and DnX (see corresponding guides in KIT collaterals).

Each item that is signed begins with the same structure, a binary, and
in the signing flow a manifest is added to it. The manifest is then
signed, and the signature and public key are entered into the header
of the manifest to create the final signed component binary.

Regardless of the type of binary being signed, all signed components
have the same final structure of original binary and manifest, where
public key and signature are part of the manifest header. See image:

Original Binary

Image

Original Binary Image

Original Binary Image

10

Manifest

Manifest

Header

Header

Info about the FW image
and signature

Extensions

FW Hash

More info about the FW
image and signature

/-‘—/f-—:{.-"f:'/)

Info about the FW image
and signature

I Public Key I

| Signature I

Extensions

FW Hash

More info about the FW
image and signature

Intel Confidential

User Guide

Theory of Signing

3.4

User Guide

OEM Key Manifest (OEM KM)

The OEM Key Manifest plays a central part in the signing mechanism.
It lists the public key hashes used for authenticating the OEM-created
binaries to be loaded.

The OEM Key Manifest itself is signed, and its corresponding public key
hash is burned into a fuse (OEM FPF) at EOM, so it can never be
changed. This creates a secure verification mechanism where firmware
verifies that the OEM Key Manifest was signed with a key owned by a
trusted owner. Once OEM KM is authenticated, each public key hash
stored within the OEM KM is able to authenticate the corresponding FW
binary.

Since the hash burned into the platform hardware can never be
changed, it is critical to secure the private key used to sign the
OEM Key Manifest. If at any stage OEM would like to update the
image on the platform, the OEM KM for the new image must be
signed with the same key used for the original OEM KM.

OEM KM Example:

OEM KM
ISH PubKeyHash 1
iUnit PubKeyHash 2
Audio PubKeyHash 3
Token PubKeyHash 4
o
o
o
4 N\
OEM KM Manifest
OEM KM Public Key
OEM KM Signature

o J

Note: each component in the OEM KM is independent and can be
entered alone, or not entered at all, to OEM KM.

Intel Confidential 11

intel)

3.5

3.6

12

Theory of Signing

Opting out of the OEM KM

OEMs who do not wish to utilize the OEM KM, may use Intel signed
components authenticated by ROM.

When creating the final flashable image, ensure Intel components will
not fail to load due to signature issues by using pre-production Intel
signed ISH/Audio/iUnit with pre-production ME FW & production Intel
signed ISH/Audio/iUnit with production ME FW.

Do not create nor include OEM KM binary into FIT during image
creation. At EOM an FPF will permanently be set to indicate that the
OEM KM is not present, and that platform image can never be updated
with an OEM KM.

e

A platform that does not have an OEM KM in the image at the time
of EOM, will never be able to load an image containing an OEM KM.

This means that if an OEM chooses not to signh any OEM components
at the time of manufacturing, they can never add OEM signed
components for that platform.

Stitching a Flashable Image

Intel provides signed components in the KIT released to OEMs. As
mentioned above, OEMs may create and sign some of their own
components. To create the final flashable image, individual
components need to be entered into the Flash Imaging Tool (FIT) to
stitch the components into the final image.

During image creation using FIT, when OEM signed components are
included into the image, the OEM KM and OEM components are added
into FIT in addition to the Intel components. (See System Tools User
Guide for more information on FIT usage.)

Intel Confidential User Guide

Theory of Signing
CSME FW
Maniest Production signed
Signature flashable image
SHEW) N
antes _ BIN
Signature '2 fi 01 1 0 '
| 01001 |
iUnit FW Lz
Manifest
Signature
—
° Key Manifest |
. Manifest | ey
o :‘y" ﬁpub Other components such
Signature Key Hash as prod signed BIOS
3.7 IP Loading

3.7.1 Boot Flow Order

The signing of components is all preparation to be used in
authentication of components during boot time.

The boot flow order and establishment of root of trust, is as follows:

1. Using the Intel public key hash stored in ROM HW, RBE and ROT
KM are authenticated. (ROT KM holds the public key hashes for the
Intel signed components.)

2. Once RBE and ROT KM are authenticated, public key hashes in
ROT KM are used to authenticate Intel components; each key
authenticates its corresponding component.

3. If an OEM KM is present, RBE will authenticate the OEM KM using
the OEM public key hash in the OEM FPF.

4. Once OEM KM is authenticated, the keys inside it are used to
authenticate OEM components included in the OEM KM list. If a
component can be signed by OEM but is not, RBE authenticates
the Intel components against the keys in ROT KM.

User Guide Intel Confidential 13

Theory of Signing

5. Lastly, if present, components or capabilities that can only be
signed by OEM, are authenticated against the keys in the OEM KM.

0‘ Signature

3.7.2

14

m

Manifest

w Tokens 05 BoofLoader

Manifest - o
Signature | & | —© |

Audio

pammnd ROT KM

Manifest
Signature

OEM KM Precedence

Ji——

During the authentication process, where relevant, the ME engine first
checks the OEM KM to see if the desired component is listed. If the
component is listed in OEM KM, the associated key hash will be used
for authenticating the component and determine whether it should

load.

If the component is not listed by the OEM as a desired usage in the
OEM KM, the ME engine will look up the key hash in the ROT KM, and
determine whether the component can load based on whether it
authenticates.

If a public key hash is present in OEM KM, yet it fails to authenticate,
ME will not try to authenticate the corresponding Intel components
based on ROT KM.

See table below showing the components which can be listed in the
OEM KM, and what the precedence is if they are listed.

FW Component ROT KM | OEM KM |Precedence -2 auth'entlcatlon SEELET i)
FW loading
Authenticate using key in ROT KM, if
ME BUP Y N ROT KM no key or authentication fails, fail to
boot.
ME Main Y N
PMC Y N
ISH BUP Y N
. Authenticate using key in ROT KM, if no
s) Y N key or authentication fails, fail to load
Image #1
component.
Intel Confidential User Guide

Theory of Signing
If usage present in OEM KM,
ISH Main FW Y Y OEM KM then |authenticate using key in OEM KM. If
ROT KM authenticate fails, fail to load
iUnit Boot Loader [Y Y component & exit flow.
If usage not present in OEM KM,
authenticate using key in ROT KM. If
iUnit Main FW Y Y no key or authenticate fails, fail to
load component.
If key usage marked for component in
Audio (cAVS) N v OEM KM Only | OEM KM, authenticate using key in
Image #0 OEM KM, if authenticate fails, fail to
load component & exit flow.
OS Boot Loader N Y
OS Kernel N Y
OEM Debug
Tokens . Y
3.7.3 Signature Authentication during Boot

Every component in the boot flow, Intel and OEM, all go through the
same authentication flow to verify the signature of the component. No
matter what the component is, RBE, a key manifest or a component
such as ISH, the concept is the same.

When platform boots, all that is known to be secure are the public key
hashes in the HW (Intel’s in ROM, and OEM’s in OEM FPF). Every step
of the way is started with a public key hash that has been
authenticated to be secure, and a component which needs to be
authenticated.

The component to be authenticated contains the original binary
attached to a manifest which contains the public key and RSA
signature.

The following three steps authenticate the binary to be loaded:

1. Verify Public Key
Public key found in the manifest header is hashed and compared
with the already verified public key hash used to authenticate the
component. For example:

Public key in RBE and ROT KM manifest header will be hashed
and compared with the public key hash in ROM.

Public key in OEM KM manifest will be hashed and compared

a.

b.

2. Use

with public key hash in OEM FPF.

Public key in OEM ISH will be hashed and compared with
public key hash for ISH in OEM KM when present there. If not
present there, Intel ISH public key in manifest with be hashed
and compared with public key hash for ISH in ROT KM.

Public Key to Verify Signature

Once public key in manifest was verified, it is used to decrypt the
signature. This will produce a hash of the manifest section without
the public key and signature. The manifest in the binary is hashed

User Guide

Intel Confidential

15

®
l n tel Theory of Signing

and compared with the decrypted signature output. If these
hashes of the manifest equal, then the manifest has been
authenticated.

3. Use Verified Manifest to Verify FW
Manifest has been verified, therefore anything within it can be
trusted, including the hash of the original FW binary. The original
FW is hashed and compared with the hash of the FW in the
manifest to authenticate the FW. If the hashes equal, the
component is fully authenticated and can be loaded or used to
authenticate the next step in the chain.
1. Verify Public Key Matches 2. Use Public Key Verify Signature of 3. Use verified manifest to verify FW
‘) trusted key in Intel Silicon. the manifest
° Fw
FW B |
Signed Hash the i o
by Intel Manifest Sloican
Privat [—————manifest | :
Kg; © el Manifest B Manifest () Manifest
RSA Signature Public Key —|__Intel Public Key Manifest Intel Public Key
. Hash
RSA Signature ——| RSA Signature \‘—_ﬂr—‘ RSA Signature
A

Ere
15 e
© P |
with Intel Public Key
Intel Public Key | 00 7 T
L@ V' Manifest FW

Intel Public Key Hash FW Hash

16 Intel Confidential User Guide

How to Sign

4

How to Sign

4.1

4.2

User Guide

High Level Signing of OEM Components

1.

Generate PKI key pairs and the public key hash for:
a. Each component to be signed by OEM
b. The OEM Key Manifest

(When production signing, keys used to generate signature should
be from secure server. See production signing section.)

Use the Intel® MEU tool to add to each binary a manifest,
signature, and where relevant also add metadata or compress the
binary. (When production signing, keys used to generate signature
should be from secure server.)

Create an OEM Key Manifest!, including within it the public key
hash of each of the created keys for the correct corresponding
component, and use the Intel MEU to manifest/sign it.

Note: The order in which steps 2 and 3 are executed does not
matter.

Enter the desired image components to the FIT tool. This should
include the Intel components of the image as well as any OEM
signed component, the OEM KM and the public key hash
corresponding to the private key used to sign the OEM KM.

At EOM (End of Manufacturing)/closemnf process, the public key
hash value will be burned into the HW FPFs permanently.

For debug use-cases, you may add an OEM debug token to Intel
FIT.

Quick List of Signing Commands

1.

Generate a local private/public key pair

The Intel tools are designed to work together with the open source
OpenSSL tool (version 1.0.2b), which generates key pairs in the
RSA-2048 PKCS-1.5 format. This is the only key format which
is supported for the Intel IFWI image signing flow! Although
other tools which generate key pairs in this format can be used for
signing, Intel tools currently do not interface with any other tool,
and if you choose to use a different tool, Intel cannot provide
support.

The OpenSSL tool is not provided by Intel, it must be installed
separately. One source for the OpenSSL binaries is Shining Light
Productions, the "Light" version is sufficient. Ensure that
OpenSSL.exe can be run in the directory in which it is installed,
and it is able to create output files there as well, otherwise you
may see errors when executing some of the commands.

1 OEM KM is optional. OEMs who do not wish to use OEM KM may keep OEM Public Key
hash as zeros in FIT tool.

If flashing an image without OEM KM at the time of EOM, the platform will never be able to
contain an OEM KM.

Intel Confidential 17

https://slproweb.com/products/Win32OpenSSL.html
https://slproweb.com/products/Win32OpenSSL.html

18

How to Sign

You can generate a private key by running the following command
from the CLI:

a. Generate privateKey.pem:
Openssl.exe genrsa -out <privateKey.pem> 2048

b. Generate publickey.pem:
Openssl.exe rsa -in <privateKey.pem> -pubout -out
<publicKey.pem>
Note: Generate a key pair for each component to be

signed, as well as for OEMKeyManifest. Or sign all with the
same key pair.

. Generate meu_config.xml

meu.exe -gen meu_config

a. Update path to openssl.exe

b. Update path to privatekey.pem

c. Update path to LZMA (If signing ISH)
(LZMA tool can be downloaded from here. Version 9.2 or 9.18.
Publish date is 2010-11-18)
Generate PubKeyHash.bin
meu.exe -keyhash <pubKeyHash> -key <publicKey.pem>
Note: There are additional commands listed in the next chapter
for creating the public key hash manually with Openssl, or using
MEU to extract it from a binary or along with the signing
command.
Generate the necessary xml for component being signed:
meu.exe -gen [codepartition] [codepartitionmeta]

[oemunlocktoken] [dnximagerecovery]

(Need a separate code partition file for each IUP or capability.)
Update the value field under:
(1) Name
(2) Usage (taken from value_list)
(3) Version (see versioning section bellow)
(4) InputFile (raw bin)
Generate OEMKeyManifest.xml
meu.exe -gen OEMKeyManifest
Update value field under:
(1) KeyManifestld
(2) (If necessary) SecurityVersionNumber
(3) Usage
(4) HashBinary
Generate CodePartition_signed.bin (Signs the
Codepartition.xml)

meu.exe -f CodePartition.xml -o
<CodePartition_signed.bin> -key <privateKey.pem>

Generate OEMKeyManifest_signed.bin (Signs the
OEMKeyManifest.xml)

Intel Confidential User Guide

http://www.originaldll.com/file/lzma.exe/31506.html

How to Sign

meu.exe -f OEMKeyManifest.xml -o
<OEMKeyManifest_signed.bin> -key <privateKey.pem>

[]

XML

meu_Confij

01001

Signed ISH bin
with manifest

EH)

and signature

y
Audio | J '@ 10110

il

01001
Signed Audio bin
. with manifest
ash odePartiti and signature
(]
Q ~—
< [BIN |
(MEU 10110

— Signed OEM KM

4.3

4.3.1

User Guide

- with manifest
(OEMKeyManife: and signature
Hash

Extended Signing Commands,
Detailed Instructions and MEU Abilities

Additional ways to generate public key hash

Using MEU:
1. Extract public key hash from signed binary:
meu.exe -keyhash <output hashfile> -f <input.bin>
Example:
meu.exe -keyhash temp/hash -f iunp.bin

Intel (R) Manifest Extension Utility. Version: 15.xX.X.XXXX
Copyright (c) 2013 - 2017, Intel Corporation. All rights
reserved.

MM/DD/YYYY - HH:MM:SS am

Command Line: meu -keyhash temp/hash -f iunp.bin
Log file written to meu.log

Loading XML file: C:/Users/meu_config.xml

Public Key Hash Value:

Intel Confidential 19

intel.

How to Sign

14 05 A8 A4 EB 1C 8A C2 51 19 7D 85 96 14 09 FF 15 FD CD
23 D3 25 CC DD 88 D2 17 5C DE 3B 27 36
Public Key Hash Saved to:

temp\hash.bin

temp\hash.txt
Program terminated.

2. Generate public key hash along with the signing command:

meu.exe -keyhash <output hashfile> -f <input.xml> -o
<output.bin>

Manually with Openssl:
1. Extraction from the public or private key:
If using the public key:
openssl.exe rsa -in public.pem -text -noout -pubin
If using the private key:
openssl.exe rsa -in private.pem -text -noout
a. Copy the modulus (excluding any leading bytes that are all 0s)
b. Reverse the modulus byte order (Use excel to paste all the
bytes on different rows into a column, then put ascending
numbers in another column and do a reverse sort on the
numbers)

c. Paste the reverse byte modulus into a new file <new file> in
a hex editor

d. Copy the exponent following the modulus into the new file
(make sure it is little endian)

Hash the new file using
openssl.exe dgst -sha256 <new file>
2. Extraction from a manifest signed with the keys, by MEU
a. Open a signed file that MEU has created in a hex editor

b. Search for the string "$MN2"”, then move 100 bytes after
the start of "$MN2" (this will be the start of the modulus +
exponent)

c. Extract the following 260 bytes to a new file <new file>

d. Hash the new file using openssl:
openssl.exe dgst -sha256 <new file>

The public key hash is a readable string, and can be copied and pasted
from the text file as needed.

4.3.2 Versioning of Sighed Components

All XMLs generated by MEU contain a field for setting the version in the
manifest of the binary to be signed.

<SecurityVersionNumber value="0x00000000" help text="The security version number of the OEM Key
Manifest" />

<VersionMajor value="0x0000" help text="Indicates the major number in the version numbering" />
<VersionMinor value="0x0000" help text="Indicates the minor number in the version numbering" />
<VersionHotfix value="0x0000" help text="Indicates the hotfix number in the version numbering" />
<VersionBuild value="0x0000" help text="Indicates the build number in the version numbering" />

20 Intel Confidential User Guide

How to Sign

OEMs are required to define these versions so the component can be
identified by its version. Versions are updated based on the changes
made, with the following rule of thumb in mind:

Major A major change in the component or design

Minor A minor change to the component

Hotfix If the new component is basically the same as before, but
includes a hotfix

Build Incremented any time the component is rebuilt again for
whatever reason

Here is the breakdown of the versioning as an examples taken from
CSME:

VersionMajor: 11 (when CSME version 11.8.50.3399)
VersionMinor: 8 (when CSME version 11.8.50.3399)
VersionHotfix: 50 (when CSME version 11.8.50.3399)
VersionBuild: 3399 (when CSME version 11.8.50.3399)
The security version number (SVN) starts at 1 for production IPs. It is
used as a security measure to block the loading of versions with
security vulnerabilities. On a platform which contains an IP with SVN =
X, upgrade is allowed to versions with SVN=x or SVN= x+1.
Therefore:
e To allow downgrade to the previous IP versions, keep SVN the
same value as the previous version.
e To block downgrade to the previous IP versions, increase the
SVN.

For example, in machine that has a component with version 1.1.0.2
and SVN 2, the following applies:

Version SVN Value Can it be updated?

1.0.0.1 1 No, the SVN value is lower
1.1.0.1 2 Yes, same SVN value
1.2.0.0 3 Yes, higher SVN value

For some components, SVNs can be committed to HW by running a
HECI command. Please see the BIOS writers guide and System Tools
User Guide for more information.

User Guide Intel Confidential 21

4.4

4.4.1

22

intel.

How to Sign

Intel® Manifest Extension Utility (Intel®

MEU)

The Intel® Manifest Extension Utility (MEU) inputs a firmware binary
created by a 3™ party and outputs an independent-updateable
partition (IUP) that is compressed and signed.

The Intel® Manifest Extension Utility (MEU) requires administrator
privileges to run under Windows* OS.

The Intel® MEU tool completes the following steps:

e Creates an Independent Updatable Partition (IUP) by adding
manifest and meta-data information to the firmware.

e Calls an external LZMA tool for compression of the ISH binary
(Version 9.2 or 9.18. Publish date is 2010-11-18)

e Calls the signing infrastructure tool to sign the partition.

Usage

The executable can be invoked by:

MEU.exe [-exp]

[-o] [-f] [-gen]
[-ul] [-u2] [-u3]
noverify] [-keyhash]

[-printman

Option

-H or -?2:

-3rdparty
-EXP

-VER

-binlist

-o <filename>
-f <filename>

-gen <type>

-cfg <filename>
-decomp <type>

-save
<filename>

-w <path>
-s <path>
-d <path>

[-h|?] [-3rdparty] [-version|ver] [-binlist]
[-cfg] [-decomp] [-save] [-w] [-s] [-d]
[-mnver] [-mndebug] [-st] [-stp] [-key] [-

[-resign] [-export] [-import]
Description

Displays the list of command line options
supported by the Intel® MEU tool.

Displays 3rd party software credits.

Shows examples about how to use the tools.
Shows the version of the tools.

Displays a list of supported binary types.
Overrides the output file path.

Specifies input XML file.

Specifies the binary type for which to generate a
template XML file.

Overrides the path to the tool config XML file.
Specifies the binary type to use for decomposition.

Specifies the output XML path.

Overrides the $WorkingDir environment variable.
Overrides the $SourceDir environment variable.

Overrides the $DestDir environment variable.

Intel Confidential User Guide

How to Sign

4.4.2

4.4.2.1

User Guide

-ul <path>
-u2 <path>
-u3 <path>

-mnver <value>

-mndebug
<true|false>

-key <path>

-st <tool>

-stp <path>

-noverify

-keyhash
<path>

-resign
<indices]|'all'>
-export
<indices]|'all'>
-import <path>

-printman
<indices]|’all’>

Examples

Overrides the $UserVarl environment variable.
Overrides the $UserVar2 environment variable.
Overrides the $UserVar3 environment variable.

Overrides the version of the output binary.
(Format: Major.Minor.Hotfix.Build)

Overrides the debug flag in the output binary's
manifest(s).

Overrides the signing key in the tool config XML
file.

Overrides SigningTool in the tool config XML file.

Overrides SigningToolPath in the tool config XML
file.

Skips verification of generated manifest signature.

Exports the public key hash to a directory.

Resigns manifest(s) in a binary.

Exports manifest(s) from a binary.

Imports manifest(s) into a binary.

Prints manifest(s) information from a binary

Generate Configuration XML Template

To get started using Intel MEU for signing, it is mandatory to set some

configurations for the tool. To do this, run the following command:
meu -gen meu config

Intel Confidential

23

E

intel.

How to Sign

This will generate a default configuration xml file:

The XML is generated with a default of using Openssl| as the signing

<?xml version="1.0" encoding="utf—8"?#
<MeuConfig version="2.5" >
<PathVars label="Path Variables">
<WorkingDir value="./" label="$WorkingDir" help text="Path for environment variable $WorkingDir" />
<SourceDir value="./" label="$SourceDir" help text="Path for environment variable $SourceDir" />
<DestDir value="./" label="$DestDir" help text="Path for environment variable $DestDir" />

<UserVarl
<UserVar2

value="./" label="$UserVarl" help text="Path for environment variable $UserVarl" />
value="./" label="$UserVar2" help text="Path for environment variable $UserVar2" />

<UserVar3 value="./" label="$UserVar3" help text="Path for environment variable $UserVar3" />

</PathVars>

<SigningConfig label="Signing Configuration">
<5igningTool value="OpenSSL" value list="Disabled, , OpenSSL" label="Signing Tool" help text="Select
tool to be used for signing, or disable signing." />
<8igningToolPath value="" label="Signing Tool Path" help text="Provide the path to your signing
tool executable, such as fusr/bin/openssl or C:\OpenSSL-Win32\bin\openssl.exe" />
<PrivateKeyPath value="$WorkingDir\private.pem" label="Private Key Path" help text="Path to private
RSA key (in PEM format) to be used for signing. Key is required if using OpenSSL." />

</SigningConfig>

<CompressionConfig label="Compression Configuration">
<LzmaToolPath value="" label="LZMA Tool Path" help text="Path to lzma tool executable." />
</CompressionConfig>

L</MeuConfig>

24

tool. The user must enter the correct path, to the signing tool
executable, under the value of SigningToolPath:

<SigningToolPath value="" label="Signing Tool Path"

help text="Provide the path to your signing tool executable,
such as /usr/bin/openssl or C:\OpenSSL-
Win32\bin\openssl.exe" />

To generate the manifest structure without the signature and public
key, set the signing tool value to ‘Disabled’:
<SigningTool value="Disabled" Value list="Disabled,,OpenSSL"

label="Signing Tool" help_text:"Selgct tool to be used for
signing, or disable signing." />

When signing is set to Disabled, there is no need to add the Openssl
path as indicated above.

If using a single private key to sign several components (such as for
R&D purposes), the private key path may be entered into this XML
instead of the signing command:

<PrivateKeyPath value="$WorkingDir\private.pem"
label="Private Key Path" help text="Path to private RSA key
(in PEM format) to be used for signing. Key is required if
using OpenSSL."™ />

If the PrivateKeyPath value is left blank here, the private key will be
mandatory in the signing command.

When signing ISH component, it is mandatory to compress the
binary using LZMA tool. This is done by setting the LZMA tool path in
the configuration XML:

<LzmaToolPath value="" label="LZMA Tool Path"
help text="Path to lzma tool executable." />

For signing any other component, leave this value empty as default.

Intel Confidential User Guide

How to Sign

4.4.2.2

Generate Code partition XML

Code partition XML is used to set the manifest data for ISH. Generate
a code partition XML to manifest, compress and sign ISH with the

following command:
meu -gen CodePartition

This will generate a default codepartition.xml file:

t="Name to use in the output binary's directory. Maximum length is 4 characters. " /

jth
the length will be computed as needed by the tool.
<Usage value="IshManifest" value list=
CseﬂupHanxfest ,CseMainManifest, PmcManifest, ,WcodManifest, LoclManifest, 6 IntelUtokManifest, ,UsbTypeCDPHYManifest, ,BootPolicyManifest,,6 iUnitBootLoaderManifest, 6 iUnitMainFwM
anifest, ,cAvsImageOManifest, ,cAvsImagelManifest, IfwiManifest, OsBootLoaderManifest, OsKernelManifest, OemSmipManifest, 6 IshManifest, OemDebugManifest, OemKeyManifest,, Silent
LakeVmnManifest, ,OemDnxIfwiManifest” help teit="
publ)c key." />

4.4.2.3

User Guide

"0x10000000" />
£="0x00000000" />
©="0x00000000" />
-"Version Major"
"Version Minor"
"Version Hotfix
="Version Build" he

sed to manually set the Major Version field in the manifest" />
sed to manually set the Minor Version field in the manifest" />
"Used to manually set the Hotfix Version field in the manifest" />
sed to manually set the Build Version field in the manifest" />

n must be specified manually." />
t "Blnary file from which to extract the version details.
_text="Offset of Major Version number's LSB in anutsala,"
="Offset of Major Version number's MSB in InputFile."
~"Offset of Minor Version number's LSB in InputFile."
Offset of Minor Version number's MSB in InputFile."
"Offset of Hotfix Version number's LSB in InputFile." />
"Offset of Hotfix Version number's MSB in InputFile."
elr Offset of Build Version number's LSB in InputFile." />
om0 p_text="Offset of Build Version number's MSB in InputFile." />

/>

NSNS

"ish_main">

="ish_main.bin" lp text="Path to binary file to load for this module's data." />
alue="LZMA" value t="NOT_COMPRESSED, ,LZMA" help text="Select compression type for this module." />
—nOx£6" />

ISH is the only OEM signed component using the code partition XML,
therefore the default values are set for ISH.
It is important to configure the versioning and add the correct path to

the ISH binary file in:

<InputFile value="ish main.bin" help text="Path to binary
file to load for this module's data."™ />

And leave the compression setting value to LZMA, so the binary is
compressed. (The LZMA path must be entered in the meu_config.xml.)

Once the codepartition.xml has been edited to include all the required
input fields, MEU can be run with the xml as input to manifest and sign
it with the private key created for this purpose.

Generating Code Partition Meta

The IUnit and aDSP (Audio) FW binaries use the codepartitionmeta.xml
file to manifest and sign their binaries. Meta in the file name refers to
the metadata added for these components. Generate the code

partition meta xml file with the following command:
meu -gen CodePartitionMeta

Intel Confidential 25

-'Length of output binary, extra space will be filled with OXFF's. If length is smaller than required, an error will be reported. If set to 0,
/

Indicates the type of data contained in this binary. This value is used during signature verification to validate the

list="true, false" help text="If enabled, the version details will be extracted from the InputFile binary at the offsets specified. If

intel.

How to Sign

This will generate a default codepartitionmeta.xml file:

<CodePartitionMeta v n=""

ame to use in the output binary's directory. Maximum length is 4 characters. " />

ength 0" help t Length of output binary, extra space will be filled with OxFF's. If length is smaller than required, an error will be reported.
0, the length will be computed as needed by the tool." />

<Usage value="" val

1f set to

"CseBupManifest, ,CseMainManifest, PmcManifest, WcodManifest, LoclManifest, ,IntelUtokManifest, ,UsbTypeCDPHYManifest, ,BootPolicyManifest, ,iUnitBootLoaderManifest, ,iUnitMainFw
Manifest, cAvsImageOManifest, cAvsImagelManifest,,IfwiManifest, OsBootLoaderManifest, OsKernelManifest, OemSmipManifest,, IshManifest, OemDebugManifest, OemKeyManifest, Sile

ntLakeVmmManifest , ,OemDnxIfwiManifest" help text="Indicates the type of data contained in this binary. This value is used during signature verification to validate the
public key." />

VendorId v

t="32-bit Vendor ID value. (ex. Intel=0x8086)" />

"Version Major" help t
Version Minor" |
"Version Hotfix"
="Version Build"

"Used to manually set the Major Version field in the manifest" />
sed to manually set the Minor Version field in the manifest" /
"Used to manually set the Hotfix Version field in the manifest" />
"Used to manually set the Build Version field in the manifest" />

NExXtr
<Enabled va

lue_list="true,,false"
be specified manually." />

text="Binary file frem which to extract the version details." />

=10 ext="Offset of Major Version number's LSB in InputFile."
Offset of Major Version number's MSB in InputFile.
="Offset of Minor Version number's LSB in InputFile."
Offset of Minor Version number's MSB in InputFile."
"Offset of Hotfix Version number's LSB in InputFile." />
"Offset of Hotfix Version number's MSB in InputFile." />
Offset of Build Version number's LSB in InputFile." />
="Offset of Build Version number's MSB in InputFile." />

t="1f enabled, the version details will be extracted from the InputFile binary at the offsets specified. If

goas

</versio
<CodePartitionMe
<Name value=!

p_text="Name to use as metadata filename in output binary. Maximum length is 12 characters.” />
e="junit_met.bin" help text="Local path to metadata binary file" />
ata>

ext="Path to binary file to load for this module's data." />

115t ="NOT_COMPRESSED, ,LZMA" help t="Select compression type for this module." />
</CPMDat

</CPMModules
</CodePartitionMeta>

The default codepartitionmeta.xml file is set to IUnit component, but
can be edited for cAVS (Audio) as well.

To sign IUnit, set the usage value to iUnitMainFwManifest from the
value_list, set versioning and enter the path to the main IUnit binary
and metadata binary file:

<CodePartitionMetadata>

<Name value="iunit.met" help_ text="Name to use as metadata filename in output binary. Maximum length is 12
characters." />

<InputFile value="iunit met.bin" help text="Local path to metadata binary file" />
</CodePartitionMetadata>
<CPMModules>
<CPMDataModule name="iunit">
<InputFile value="iunit.bin" help text="Path to binary file to load for this module's data." />

<CompressionType value="NOT_COMPRESSED" value 1ist="NOT_COMPRESSED,,LZMA" help text="Select compression type
for this module." />
</CPMDataModule>

To edit the file for Audio signing, change the Name value to “"CAVS”,
set the usage value to cAvsImageOManifest from the value_list,
configure the versioning and set the name value and input value of
binaries to correspond to the Audio component:

<CodePartitionMetadata>

<Name value="cavs.met" help text="Name to use as metadata filename in output binary. Maximum length is 12 characters." />
<InputFile value="cavs met.bin" help text="Local path to metadata binary file" />
</CodePartitionMetadata>
<CPMModules>
<CPMDataModule name="cavs">
<InputFile value="cavs.bin" help text="Path to binary file to load for this module's data." />
<CompressionType value="NOT COMPRESSED" value list="NOT_COMPRESSED,,LZMA" help text="Select compression type for this module."
/>
</CPMDataModule>

Once the codepartitionmeta.xml has been edited to include all the

required input fields, MEU can be run with the xml as input to manifest
and sign it with the private key created for this purpose.

26 Intel Confidential User Guide

How to Sign

4.4.2.4 Secure Tokens (OEM Unlock Tokens)

The OEMUnlockToken binary is authenticated by the Intel ME FW.
OEMs who wish to use this feature need to create token, sign it with
OEM private key and include the public key hash in the OEM KM for
OemUnlockToken.

There are two ways to create such token- using PFT (Platform Flash
Tool) or MEU tool:

4.4.2.4.1 Using PFT

Open PFT tool and select the security tab, and click on General
Settings:

E Intel® Platform Flash Tool 5.9.1.0

File | Security Help

Get Device Data

» Generate Token Payload Binary

» Sign Token Payload
'+ Sign Current Token

ﬂ Convert Binary Payload {.bin) to XML
ﬂ Convert Signed Binary (. tok) to XML

I'r_fal Write Token to the device

€} User Guide

Modify the settings so the signing method uses Local keys, then fill in
the path to the private key under key file. If you do not have a private
key, generate one using openssl, as described earlier in this document.
Edit the OEM ID and any other setting relevant here, then click OK to
save.

User Guide Intel Confidential 27

28

intel.

How to Sign
(3 General Settings ? *
Signing I Device Connection I
—Signing methed

(" Remcte HSM (® Localkeys (Loczl HSM

—Signing keys

Key Fie: |

Password: I

—5ecure Provisioning

Online RSA Public key file: I

Online RSA Private key file: I

Offline RSA Public key file: I

Offline RSA Private key file: I

—Anti-Cloning

Public OEM ID

Generate from Private entries

Variant ID

E Cancel

Once general settings are done, open a new project:

Intel Confidential

User Guide

How to Sign

3 Intel® Platform Flash Tool 5.9.1.0

File Security Help

Flash editor

Provision

i INFO -

- m} X
Save | Save As |
"Devim selecion ————————
I [=]]
Part Id
’7| Browse ‘

G te & Sign

Get Device Data | & |

Click on button below to generate a full signed
token:

l; Activate Anti-Cloning

@ Generate &5ign Token

Write [Read [Erase
Write a token to the device:

o

Erase or Read a token from the device:
Token ID: ©l
léa Read ¥ FErase |

[Mere...

Clear Log

When prompted, fill in Lakefield platform and OEM Unlock Token, then

click OK:
3 Mew token ? >
1. Select platform: ;I

2. Gelect Token template:

OEM Unlock Token hd I

.

Edit the fields to customize the token as you would like (Flags,
Expiration, knobs etc.) Then click on Generate & Sign Token. The
token will be created and signed with the local key entered in the

setting page earlier.

User Guide

Intel Confidential 29

intel.

How to Sign

3 Intel® Platform Flash Tool 5.9.1.0 - O x

File Security Help

OEM Unlock Token @ l ° New | Open |
Manifest Extension: Save | Save As |
n Flags: 8 Edit flags... bz SR
Flash editor Expiration (seconds): |2592000sec. = | j
Type: 21 Part1d
Manufacturing lot: 0 Browse
Part TD: Generate & Sign
Add Part ID
Get Device Data B
Provision «0 | Click on button below to generate a full signed
token:
Payload:

Knobs:

OEMUniock ~ ISHGDBDebug | Bootguard | OEMBiesdebug 4| P

[v Activated

Write a token to the device:

1D: 80850020 [i==

Erase or Read a token from the device:

Walue {inHex): |00000000 Edit... Token ID: §(2)]]
i Read % Erase

I+ Mare...

Clear Log

Find your newly generated Token at the location indicated in the log
found in the tool UI:

072419 10:57:38.239 INFO : [TmtApi] Token has been successfully generated to

For more information, check the LKF Secure Token Guide.

4.4.2.4.2 Using MEU

the OEM needs to generate xml for it using the following command:
meu -gen OemUnlockToken

This will generate a default oemunlucktoken.xml file:

k?xml version="1.0" encoding="utf-8"?>
j<OemUnlockToken version="2.5" >

<ExpirationSeconds value="0x00278D00" help text="Time from Part ID generation to Token expiration (in seconds)." />
<PartIdsPath value="" help text="Path to directory containing Part ID binaries." />
1 <TokenFlags>

<PartRestricted value="Yes" value_list="Yes, No" />
<AntiReplayProtected value="Yes" value list="Yes,,No" />
<TimeLimited value="Yes" value list="Yes, No" />
</TokenFlags>
1 <TokenKnobs>
<OemUnlockKnob value="DoNothing" value list="DoNothing, ,OemUnlockEnabled" />
<IshGdbDebugKnob value="DoNothing" value list="DoNothing,,IshGdbSupportEnabled" />
<BootGuardKnob value="DoNothing" value list=
"DoNothing, ,BootGuardDisabled, ,BootGuardNoEnforcement, ,BootGuardNoTimeouts, ,BootGuardNoEnforcementAndTimeouts" />
</TokenKnobs>
-</0OemUnlockToken>

There are multiple flags that can be set for the token creation:
¢ PartRestricted: Set to yes to allow token to be used on any
platform where the token key hash in OEM KM authenticates
that token, and token is tied to a particular platform ID.
¢ Anti-Replay Protected: Set to yes to disable a token from
being re-used on the same device after new token is created.
Relevant for tokens tied to a particular platform ID.

30 Intel Confidential User Guide

How to Sign

4.4.2.5

User Guide

¢ TimeLimited. Set to yes to have token expire after a given
time period. Anti-Replay Protected must be set for token with
time expiration, because otherwise you can re-use the token
after RTC clear.

It is recommended to use to secure token with time expiration and
Anti-reply flag.

In the root node you can set:
e Expiration timeout (if relevant)
e Part ID path. You can retrieve the Part ID data using Intel®
FPT, by calling
FPT.exe —-GETPID <file>

This will retrieve the part ID into a file. Provide the path to the
directory that contains PID.bin or multiple PID binaries.

Note: Executing this command will invalidate all secure tokens with
Anti-replay protection generated earlier for the given platform

In the TokenKnobs section, set the ‘Knobs’ for the token. These define
what the token allows/disables on the platform. The knobs available
vary depending on the token being created. Here is an explanation of
the various knobs:

Knob Meaning

Audio

OEM Unlock Allow an OEM (Orange) unlock. It will enable debug interfaces to ISH and

ISH GDB Debug Enable ISH GDB support

Note:

BootGuardDisabled,,BootGuardNoEnforcement,,BootGuardNoTimeouts,

,BootGuardNoEnforcementAndTimeoutsare not supported with OEM
Secure Token and should be set to DoNothing.

Once the OEMUnlockToken xml has been edited to include all the
required input files the MEU can be run with the xml as input to
manifest and sign it with the private key created for this purpose.

Generate OEM KM XML

The manifest file xml template can be generated using the following

command:
meu -gen OEMKeyManifest

Intel Confidential 31

intel.

How to Sign

This will generate a default oemunlucktoken.xml file:

F?xml version="1.0" encoding="utf-8"?>
|<OEMKeyManifest version="2.5" >
<Name value="OEMP" help text="Name to use in the output binary's directory. Maximum length is 4 characters. " />
<Length value="0x0" help text="Length of output binary, extra space will be filled with OxFF's. If length is smaller than required, an
error will be reported. If set to 0, the length will be computed as needed by the tool." />
<0DemId value="0x0000" help text="ID of the OEM creating the Key Manifest" />
<KeyManifestId value="0x1" help text="ID number of the Key Manifest. This is matched by the verifier against the value stored in the
platform’s FPF." />
<Instanceld value="0x1l" help_text="Refers to the instance of the Key Manifest at hand" />
<PartitionFlags valt "0x00000000" help text="Refers to flags relevant to manifest for a specific partition" />
<PartitionVersion value="0x10000000" n?Tp text="Refers to the version of the partition of the relevant manifest" />
<VendorId value="0x8086" he text="Shows the vendor ID owning the Key Manifest at hand" />
<VersionControlNumber valt help text="The VCN is incremented whenever a change is made to the FW making it incompatible from an
update perspective with previous FW releases" />
<SecurityVersionNumber value="0x00000000" help text="The security version number of the OEM Key Manifest" />
<VersionMajor value="0x0000" help text="Indicates the major number in the version numbering" />
<VersionMinor vali 0%0000" help text—"Indicates the minor number in the version numbering" />
<VersionHotfix va "0x0000" hE*E,iE ="Indicates the hotfix number in the version numbering" />
<VersionBuild wvalu 0x0000" help text="Indicates the build number in the version numbering" />
| <KeyManifestEntries>
| <KeyManifestEntry>
<Usage value="BootPolicyManifest | IfwiManifest" value_list=
"BootPolicyManifest, ,iUnitBootLoaderManifest, ,iUnitMainFwManifest, ,cAvsImageOManifest,, cAvsImagelManifest,,IfwiManifest, ,0sBootL
ocaderManifest, ,OsKernelManifest, ,OemSmipManifest, , IshManifest, ,OemDebugManifest, ,SilentLakeVmmManifest, ,OsmDnxIfwiManifest"” />
<HashBinary value="pubkey hash.bin" help text="Path to binary file containing Public Key Hash (Must be 32 bytes)" />
</KeyManifestEntry>
</KeyManifestEntries>
</OEMEeyManifest>

Edit KeyManifestId field to a value other than zero. This value will be
entered into FIT and burned to an FPF.

Important!

The KeyManifestld field must be given a non-zero value. It is critical
that the matching field in FIT is also changed to the exact same
non-zero value. This field will be burned into an FPF and used to
validate the OEM Key Manifest on platform boot.

When updating an image with a new image, the new OEM KM must
have the same non-zero value as well.

Extra ‘KeyManifestEntry’ nodes should be added for each file that has a
unique key hash to be entered. If several files share the same key,
they can be included within the same node, as in the default xml
template.

So, for example, if the OEM Key Manifest wants to have

e IshManifest, iUnitBootLoaderManifest & iUnitMainFwManifest with
key 1

It would appear as follows:

<KeyManifestEntries>
<KeyManifestEntry>
<Usage value="IshManifest | iUnitBootLoaderManifest | iUnitMainFwManifest" value list=
"BootPolicyManifest, ,iUnitBootLoaderManifest,,iUnitMainFwManifest, ,cAvsImageOManifest, ,cAvsImagelManifest,,IfwiManifest, ,OsBootL
caderManifest, ,OsKernelManifest, ,OemSmipManifest, ,IshManifest, ,OemDebugManifest,,SilentLakeVmmManifest, ,OemDnxIfwiManifest" />
<HashBinary value="pubkey hash.bin" help text="Path to binary file containing Public Key Hash (Must be 32 bytes)" />
</KeyManifestEntry>
</KeyManifestEntries>

If the OEM Key Manifest wants to have
e IshManifest with key 1
e iUnitBootLoaderManifest & iUnitMainFwManifest with key 2

32 Intel Confidential User Guide

How to Sign

It would appear as follows:

< je v "IshManifest" val 1i

"BootPolicyManifest, ,iUnitBootLoaderManifest,,iUnitMainFwManifest, ,cAvsImageOManifest, ,cAvsImagelManifest, ,IfwiManifest, OsBoot
LoaderManifest, ,OsKernelManifest, ,OemSmipManifest,,IshManifest, ,OemDebugManifest, ,SilentLakeVmmManifest, ,OemDnxIfwiManifest" />
<HashBinary value—"pubkey hashl.bin" help text="Path to binary file containing Public Key Hash (Must be 32 bytes)" />

je | "iUnitBootLoaderManifest | iUnitMainFwManifest" € i
"BootPolicyManifest, ,iUnitBootLoaderManifest, ,iUnitMainFwManifest, ,cAvsImageOManifest,,cAvsImagelManifest,,IfwiManifest, OsBoot
rManifest, ,OsKernelManifest, ,OemSmipManifest, ,IshManifest, ,OemDebugManifest, ,SilentLakeVmmManifest, ,OemDnxIfwiManifest" />
="pubkey_hash2.bin" help text="Path to binary file containing Public Key Hash (Must be 32 bytes)" /

Once the OEM Key Manifest xml has been edited to include all the
required entries and hashes, the MEU can be run with the xml as input
to manifest and sign it with the private key created for this purpose.

4.4.2.6 Signing Command with Input XML

Once the desired XML has been edited to include all the required
entries, this command will create the manifested and signed partition

using MEU.
MEU.exe -f <XML FILE.xml> -o <Output file Name.bin>

If a private key was not specified in the MEU_config.xml, or if a
different key is to be used, add the key to the signing command as

follows:
MEU.exe -f <XML FILE.xml> -o <Output file Name.bin> -key
<privateKey>

4.4.2.7 Intel® MEU Binlist

Intel MEU supports manifesting and signing several different file types,

as listed above. To see the full list, run the following:
meu.exe -binlist

Intel(H> Manifest Extenszion Utility. Uersion: 12_0.8_1086
opyright (c> 2813 — 2817, Intel Corporation. All rights reserved.

ommand Line: meu.exe —bhinlist

he following hinary types can bhe generated by this tool. A template XML file
an he generated for a given type using the —gen switch.

Description

meu_conf ig Template toel config file Cmeuw_config.xnl)
CodePartition Generic Updateahle Code Partition

CodePartitionMeta Updateable GCode Partition with wser—provided Metadata
OEMEeyManifest OEM Key Manifest

OemlUnlockToken 0OEM Unlock Token

4.4.2.8 Intel® MEU Decomposition

Intel MEU is able to decompose a manifested and signed binary
returning it to the original state it was in before the Intel MEU added a

User Guide Intel Confidential 33

4.4.2.9

34

intel.

How to Sign

manifest and/or signature. This provides an xml detailing the

decomposition. This xml can later be used again as input to the Intel®
MEU to recreate the signed binary. The —-decomp command also
requires the binary type as its first parameter.

To decompose an OEM Key Manifest binary:
meu —-decomp OEMKeyManifest -f <input.bin> -save
<decomp KM.xml>

To decompose a codepartition Manifest binary:
meu -decomp codepartition -f <input.bin> -save
<decomp partition.xml>

To decompose a codepartitionmeta Manifest binary:
meu -decomp codepartitionmeta -f <input.bin> -save
<decomp meta.xml>

To decompose an oemunlocktoken Manifest binary:
meu -decomp oemunlocktoken -f <input.bin> -save
<decomp token.xml>

Intel® MEU Re-sign

Intel® MEU is able to re-sign a binary that has already been signed.
This is very useful when changing the signing keys - the relevant
binary files just need to be re-signed.

meu.exe -resign -f <input.bin> -o <output.bin>
<privatekey.pem>]

[-key

Some binaries, such as full IFWI images, include multiple manifests.
When calling the —resign option on such binaries, it is necessary to
include the index of the manifest to be re-signed, or ‘all’ if all are to be
re-signed (using the new key). If the index, or ‘all’ is not included, the
Intel® MEU will show a full list of the manifests included in the binary:

More than one manifest was found in this file. Please
provide a comma-separated list of the manifest indices you
want to resign. (ex. -resign "0,3,5") or specify "all" (ex.
-resign "all")

The following manifests were detected:

Index | Offset | Size | Name (i1if available)

0 | 0x000084058 | 0x000000378 | RBEP.man

1 | 0x000094058 | 0x000000378 | PMCP.man

2 | 0x0000A4580 | 0x000001750 | FTPR.man

3 | 0x0000A9000 | 0x000000330 | rot.key

4 | 0x0001F4000 | 0x000000330 | oem.key

5 | 0x0001FB058 | 0x000000378 | ISHC.man

6 | 0x00023B070 | 0x000000378 | IUNP.man

7 | 0x00023DOE8 | 0x0000004BO | WCOD.man

8 | 0x0002BDOB8 | 0x000000448 | LOCL.man

9 | 0x000342448 | 0x000000C00 | NFTP.man
Error 24: Failed to resign manifest(s). Missing manifest

indices list.

The Intel® MEU can then be called again including the index desired.
Following the above example if the OEM KM is to be re-signed, call:

Intel Confidential

User Guide

How to Sign

User Guide

meu.exe -resign 4 -f <input.bin> -o <output.bin>
<privatekey.pem>]

Intel Confidential

[-key

35

intel.

Add Components to Intel® FIT

Add Components to Intel®
FIT

5

1

Intel FIT is a tool provided to OEMs to stitch together multiple binary
files, configuration data and other input into a full SPI image. This
document will only discuss the usage of the tool as relevant to the
signing mechanism. The full image creation procedure & FIT
functionalities are detailed in the Lakefield - Intel® ME Firmware
Bring-Up Guide & System Tools User Guide.

Signing components added to FIT
1. FIT includes input fields allowing the input of binary files. Most are
available in the Flash Layout tab.

2. Add the signed OEM KM binary into FIT if OEM signed components
are included to the image.

Intel(R) AMT PAVP Supported Yes This setting determines if the Protected Audio Video Path (PAVP) fea...
Isolated Memory Ranges

Content Encryption Key This option is for entering the raw hash 256 bit string or certificate fil...
Integrated Clock Controller LSPCON Internal Displa... None This setting determines which port for LSPCON will be connected to t...
Networking & Connectivity HOCP Internal Display P... PortA This setting determines which port is connected for 5K output on In... |~

Internal PCH Buses
Power

Integrated Sensor Hub
Camera

Debug

CPU Straps

Flav T/1

v Platform Integrity

Parameter Value Help Text 2
OEM Public Key Hash . Raw hash string for the SHA-256 hash of the OEM public key corresp...

OEM Key Manifest Binary ...\oemkeymn2.bin gned manifest file containing hashes of keys used for signing comp... -

3. Add the Public Key Hash for OEM Key Manifest

This hash will be burned into an FPF in the FPF HW when the system
closes manufacture (closemnf/EOM), and can never be changed after
this stage.

Content Encryption Key TS aption is for entering the raw hash 256 bit string or certificate fil...
Platform Protection
Integrated Cock Controler LSPCON Internal Displa... None This setting determines which port for LSPCON will be connected to t...
Networkng & Comnectay HDCP Internal Display P... PortA This setting determines which port is connected for 5K output onIn... |+

Internal PCH Buses
Power
Integrated Sensor Hub

Camera

¥ Platform Integrity

Parameter Value Help Text =
Debug OEM Public Key Hash 1405 AB A4 EB 1C aw hash string for the SHA-256 hash of the OEM public key carresp...
SR OEM Key Manifest Binary ...\oemkeymn2.bin Signed manifest file containing hashes of keys used for signing comp... «
Flex /O
36 Intel Confidential User Guide

Add Components to Intel® FIT

4. The Key Manifest ID field must be changed from 0x0 to match the
value set in the OEM Key Manifest.

v Boot Guard Conf-iguration

Platform Configuration

Intel (R) ME Kernel p—

Intel(R) AMT Parameter Help Text =

Tsolated Memary Ranges Key Manifest ID ODM identifier used during the Key manifest authentication process. ...
Boot Prafile Boot Guard Profile 0 - N... Boot Guard Profile 0 - Legacy is for platforms that do not wish to ena...

Integrated Clock Controller

Networking & Connectity CPU Debugging Enabled This setting determines if CPU debug modes will be displayed. When...

Internal PCH Buses BSP Initialization Enabled This setting determines BSP behavior when it receives an INIT signal...

5.2 FIT Manifest Version Validation

In order to prevent issues in the final image due to use of an incorrect
MEU tool, LKF MEU inserts the MEU version into the IUP manifest
during the signing process. FIT uses that data to verify that the end
result image will be compatible for the image which FIT is going to
create.

The following checks are in place:

Test Title Test Logic Upon Failure

FIT will not stich
IUP IUP Manifest version (from IUP the image.
manifest manifest) == FIT supported The IUP team must
versionis manifest version update MEU and
supported resign the IUP.
by CSE FW

MEU version major.minor (from FIT will not stich

MEUand |yp manifest) == FIT version the image.
FIT are major.minor. The IUP team must
from the update MEU and
sam.e resign the IUP.
project

FIT will issue a
CSE FW FIT version warning in the log,
versionis major.minor.hotfix.build == CSE ;4 stich the IFWI.
the same FW version Use FIT and FW
asthe FIT major.minor.hotfix.build from the same CSE
version kit.

User Guide Intel Confidential 37

intel)

Production Signing

Production Signing

The purpose of this section is to allow customers to perform production
signing without requiring MEU to run on the signing server. The OEM
may use MEU to debug/dummy sign first and then export the given
manifest to a signing server for OEM proprietary signing flow.

6.1 Production Signing High-Level
After a component is signed with a debug (non-secure) key, or
component is manifested yet not signed, the manifest may be
exported to separate it from the main binary. The exported manifest
can then be sent to the secure server for production signing.
The secure server will insert a production signature and public key
hash into the manifest, which can then be imported back using MEU,
to the original binary, creating the production signed component.
® @) ®
|SH FW ISH FW OEM Signing Server
ISH FW Debu ISH Prod Manifest
_vRLYISISAR—>| I1SH Debug Manifest _’II -+ Manifest 91— —» rod Manies
m ISH Prod Signature
ISH Debug
Signature Prod
Key!
ISH FW @ l @ ISH FW
ISH Debug Manifest ISH Prod Manifest
ISH Debug —"II_’ ISH Production Legend
Signature Signature FW bin being signed. This

6.2

38

includes all the OEM
binaries: ISH FW, Tokens,
OEM KM bin, gic

Debug/Dummy Manifest &
Signature

Production Manifest &
Signature

Note: The OEM “Production Key” is the key they wish to use for the
given bin for platforms in the field. They may define this key to be pre-
production or production per the needs (i.e. during R&D dedicate a

“Pre-production” key and for launched platforms, use “Production”

key.)

Export Manifests

Use the MEU -export function to export the manifest from binaries
who need signatures added or changed. The manifest is exported to a

directory.

Intel Confidential

User Guide

Production Signing

6.3

6.3.1

User Guide

meu -export -f <binary.bin> -o
<directory containing manifests>

If the binary includes multiple manifests, you must specify the index of
the desired manifest, e.g.

meu -export 0 -f <binary.bin> -o
<directory containing manifests>

If you do not supply an index or include a11 with the —export flag,
MEU will output a list of all the manifests, including their indices:

More than one manifest was found in this file. Please
provide a comma-separated list of the manifest
indices you want to export. (ex. -export "0,3,5") or
specify "all" (ex. -—-export "all")

The following manifests were detected:

Index | Offset | Size | Name (if
available)

0 | 0x000001130 | 0x000000DSC | FTPR.man
1 | 0x000053000 | 0x000000330 | rot.key

2 | 0x000094058 | 0x000000378 | RBEP.man
3 | 0x0000A1748 | 0x000001280 | NFTP.man

Error 26: Failed to export manifest(s). Missing
manifest indices list.

Manifest structures

In order to perform production signing on the OEM server, the OEM
needs to re-sign the portion of the manifest, replace the signature and
insert the production public key. This section details the manifest
layout to enable this process.

Manifest Header
In order to use an alternate signing tool, the OEM needs to:
1. Sign the 'Signed Portion’ of the manifests with the production
signing key. The signed portion is the full manifest except for
the signature and public key.

2. Change the Signature and Public Key section with the
production signature and production public key used.

This means, the entire manifest binary must be hashed without the
three crypto fields in the header: Public Key (offset 132, size 384),

Intel Confidential 39

40

ntel)

Exponent (offset 516, size 4) and Signature (offset 520, size 385). The
hash must be performed using SHA-256, then be encrypted with PKCS
#1-v1_5 to create the signature. Add the three crypto fields, key,
exponent and signature, back into the manifest header.

Production Signing

No other fields in the manifest should be changed.

Structure of manifest header:

Entry Name Offset Size Description
Type 0 4B Must be 0x4
Length 4 4B In Dwords.
- Equals 161 for SHA-256, PKCSv1.5
version
- 225 for SHA-256, SSA-PSS version.
Version 8 4B - 0x10000 for SHA-256 PKCSv1.5 version
- 0x21000 for SHA-256,SSA-PSS version
Flags 12 4B Manifest Flags
Flags_debug 16 4B Debug flag

Optional use to indicate that manifest is debug
signed. If set to true during debug signing,
must be reverted back to false on production
signing facility.

Vendor 20 4B Vendor ID

Date 24 4B yyymmdd in BCD format

Size 28 4B in Dwords size of the entire manifest.
Maximum size is 2K DWORDS (8KB)

Header_id 32 4B Magic number. Equals $MN2 for this
version

internal_data 36 4B Must be 0x4 for all headers

version_major 40 2B Major Version

version_minor 42 2B Minor Version

version_hotfix 44 2B Hotfix

version_build 46 2B Build humber

Svn 48 4B Secure Version Number

meu_Kkit_version 52 8B MEU Kit Version

meu_manifest_version 60 4B Manifest Version - increased each

fix/change that break backward
compatibility. Last word is reserved for

future use
reserved 64 60B will be set to 0
modulus_size 124 4B In DWORDs; 64 for pkcs 1.5-2048 , 96 for

SSA-PSS - 2048

Intel Confidential User Guide

Production Signing

6.3.2

User Guide

intel)

exponent_size 128 4B
In DWORDs; for pkcs 1.5:2048, and for
SSA-PSS: 2048
Public Key 132 384
Modulus in little endian format
Exponent 516 4
Exponent in little endian format
Signature 520 384

RSA signature of manifest extension in
little endian. The signature is an PKCS #1-
v1_5 of the entire manifest structure,
including all extensions, and excluding the
last 3 fields of the manifest header (Public
Key, Exponent and Signature).

There may be multiple extensions after this manifest header making
up the rest of the manifest binary.

Signed Package Info Extension

For authenticating the various platform firmware components such as
cAVS, iUnit, ISH FW, etc. This structure will appear after manifest

header for codepartitions.

Name Offset Offset Size Description
byte
(Dec) | (Hex) | (PYteS)
Extension 0 0 4 = 15 for Signed Pkg Info Extension
Type
Extension 4 4 4 In bytes; equals (52 + 52*n) for this version,
Length where 'n’ is the number of modules in the
manifest
Package Name | 8 8 4 Name of the package
Version 12 C 4 The version control number (VCN) is
Control incremented whenever a change is made to
Number (VCN) the FW that makes it incompatible from an
update perspective with previously released
versions of the FW
Usage Bitmap 16 10 16 Bitmap of usages depicted by this manifest,
indicating which key is used to sign the
manifest
SVN 32 20 4 SVN of this signed image
Reserved 36 24 16 Must be 0
Module 0 52 34 12 Character array; if name length is shorter
Name than field size, the name is padded with 0
bytes.
Module 0 Type | 64 40 1 0 - Process
1 - Shared Library
2 - Data
3 - Reserved...
Intel Confidential 41

6.3.3

6.3.4

42

Production Signing

Module 0 Hash | 65 41 1 3 = SHA384
Algorithm
Module 0 Hash | 66 42 2 Size of Hash in bytes = N. N = 32
Size
Module 0 68 44 4 Size of metadata file
Metadata Size
Module 0 72 48 32 The SHA2 of the module metadata file
Metadata Hash
Metadata extensions
Name Offset Size Description
(bytes)
Extension Type 0 4 = 10 for module attribute extension
Extension Length 4 4 In bytes; equals 56 for this version
Compression Type 8 1 0 - Uncompressed
1 - Huffman compressed
2 - LZMA compressed
Reserved 9 3 Must be 0
Uncompressed 12 4 Uncompressed image size, must be
Size divisible by 4K
Compressed Size 16 4 Compressed image size. This is
applicable for LZMA compressed
modules only. For other modules,
should be the same as
“Uncompressed size” field.
Global Module 20 4 A globally unique identifier for the
Identifier module.
Bits 0-15: Module number, unique
in the scope of the vendor:
Bits 16-31: Vendor ID (PCI style)
Image hash 24 32 SHA2 Hash of uncompressed image

OEM Key Manifest
After Manifest Header for OEM KM, there will be Key Manifest

Extension that is used for OEM KM.

Name Offset Offset Size Description
bytes
(Dec) | (Hex) | (PYteS)
Extension Type 0 0 4 = 14 for Key Manifest Extension
Extension Length 4 4 4 In bytes; equals (36 + 68*n) for this

version, where ‘n’ is the number of
keys in the OEM KM manifest

Intel Confidential

User Guide

Production Signing

6.4

User Guide

Key Manifest Type | 8

2 = OEM Key Manifest

Key Manifest 12 c
Security Version
Number (KMSVN)

The security version number for the
OEM Key Manifest

Reserved 16 10

0 - Reserved

Key Manifest ID 18 12

ID number of the Key Manifest. This
is matched by the verifier against the
value stored in the platform in FPF.
This is typically used as an ODM ID -
to enable an OEM to assign IDs to its
various ODMs and generate Key
Manifests specific to each ODM.

Reserved 19 13

Must be 0

Reserved 20 14

16

Must be 0

Key 0 Usage 36 24

16

Bitmap of usages; allows for 128
usages. Bits 0-31 are allocated for
Intel usages; bits 32-127 are
allocated for OEM usages

Bit 0-31: Reserved for Intel usage
Bit 32: Reserved

Bit 33: iUnit BootLoader Manifest
Bit 34: iUnit Main FW Manifest

Bit 35: cAVS Image #0 Manifest

Bit 36: cAVS Image #1 Manifest

Bit 37: Reserved

Bit 38: OS Boot Loader Manifest

Bit 39: OS Kernel manifest

Bit 40: Reserved

Bit 41: ISH manifest 1 (ISH Main)
Bit 42: ISH manifest 2 (ISH BUP)
Bit 43: OEM Debug Tokens Manifest
Bit 44: Reserved

Bit 45: Reserved

Bit 46: Reserved

Bit 47 - 127: Reserved for future use

Key 0 Reserved 52 34

16

Key 0 Reserved 68 44

Key 0 Hash 69 45
Algorithm

3 = SHA384

Key 0 Hash Size 70 46

Size of Hash in bytes = N. N = 32

Key 0 Hash 72 48

N (32)

The hash of the key.

Import Manifest

Use the MEU -import function to import the signed manifest back into
the binary. The signed manifest must be in a separate directory
passed as an input parameter. If the binary supports multiple
manifests (e.g. a full SPI binary), and the folder has multiple

Intel Confidential 43

44

ntel.

Production Signing

manifests, the command will be able to import them all back into the
binary.

meu.exe -import <directory containing manifests> -f
<input binary.bin> -o <output binary.bin>

8

Intel Confidential User Guide

Common Bring Up Issues and Troubleshooting Table

7 Common Bring Up Issues
and Troubleshooting

Table

7.1 Common Bring Up Issues and
Troubleshooting Table

Problem / Issue

Solution / Workaround

Intel MEU tool fails to run

Confirm that the MEU_Config and template xml
files are present in the same folder as the Intel
MEU tool.

Confirm that both files have been modified
properly.

Audio component fails to
load although signed and
entered into image as
instructed

Check in OEM KM, that the OEM audio
component uses the cAVSO key in OEM KM, not
CAVS1.

FIT errors

1. Check that public key hashes in OEM KM
match the private keys used to sign the
component.

2. Check that OEM public key hash in FIT
matches key used to sign OEM KM

3. Verify that codepartition, codepartitionmeta,
oemkeymanifest and other relevant XML fields
entered correctly

4. Ensure MEU version used is aligned with FIT
version (from same KIT)

User Guide

Intel Confidential 45

